
1/25

Parallel & Distributed Graph algorithms for large graphs, practical challenges

Parallel & Distributed Graph algorithms for large
graphs, practical challenges

Luc Hogie (CNRS), Michel Syska (Univ. Côte d’Azur),
Stéphane Pérennes (CNRS), Nicolas Chleq (Inria)

14 Novembre 2018

2/25

Parallel & Distributed Graph algorithms for large graphs, practical challenges

Who we are

I3S is the computer science laboratory of Université Côte d’Azur.
It is located at the heart of Sophia Antipolis.

COATI — theoretical and experimental aspects of graph
algorithms. Software production: 3 librairies:

MascOPT network optimization (2001-)
Grph computing large graphs in-memory (2010-)

BigGrph platform — distributed library for computing
largER graphs (2014-)

SCALE — theoretical and experimental aspects of distributed
computing. Software: ProActive, a platform for
component-based computing.

COATI is hosted/supported by Inria.

3/25

Parallel & Distributed Graph algorithms for large graphs, practical challenges

Graphs, Digraphs, Hypergraphs

Figure: Weigthed graph, directed graph ad Hypergrah

- Undirected Graph : Vertices + Edges (vertices pairs) ↔
Symetric binary relation

- Directed graph : Vertices + Arcs = Couple of vertices

- Hypergraphs : (hyper)Edges = Groups of vertices

Mostly study the topology (structure) of the graph, however
graphs are often weighted → values labeling the vertices and arcs.

4/25

Parallel & Distributed Graph algorithms for large graphs, practical challenges

Graphs : becoming ubiquitous in sciences

some say pervasive ...

5/25

Parallel & Distributed Graph algorithms for large graphs, practical challenges

Graph representation, memory usage

A graph wtih n vertices m edges graph can be encoded (stored) as:

Its Adjacency Matrix → n × n matrice.

for each vertex the list of neighbors → n + m.

Structure may allow compression.

Figure: Interval graph, Union of 3 cliques.

6/25

Parallel & Distributed Graph algorithms for large graphs, practical challenges

Graph representation, memory usage (II)

Labeling of the vertices matters.

- Hypercube of dimension n + proper labeling → edges are
encoded in the labels. With a random labeling edges appear
as arbitrarly

- In a Tree one can always label the sons of a vertex
consecutively. A node on store only the ID of its first neighbor
and its degree.

- In a subgraph of a Grid one can always label the potential
neighbors of a node as 0, 1, 2, 3.

Figure: The hypercube of dimension 4, a Tree, and a subgraph of the grid.

7/25

Parallel & Distributed Graph algorithms for large graphs, practical challenges

Graph representation : alt representation, hidden constants

There are cases in which the natural representation is not the list
of edges.

Using Alternative representation

For a planar graph, a planar embeding (as example the list of
faces) may be necessarly to run efficiently the algorithms.

For an interval graph, the natural representation is to encode
node as intervals.

More generaly additonal information, such as a Tree
decomposition may be usefull.

8/25

Parallel & Distributed Graph algorithms for large graphs, practical challenges

Graph representation : Very large graphs

Some specifities of very large graphs

- Constants do matter, using high level abstract data structures
increase the memory footprint by a large factor. Efficient
solutions are often ad-hoc.

- For very large graph finding and using some hidden specific
structure or compressing the graph representation may be
unfeasible.

- There are many cases in which some aspect of the structure
are known in advance. As example graphs in the plane or
physical space, graph for which a natural partitionning do
exist.

9/25

Parallel & Distributed Graph algorithms for large graphs, practical challenges

Graph Properties and Graph Algorithms

We may distinguish two different but related types of questions :

A) Determine some properties of the graph per se.

B) Find some properties of the graph that allow to answer to the
questions of type A.

10/25

Parallel & Distributed Graph algorithms for large graphs, practical challenges

A few Graph properties, type A questions

Statistics

degree sequence, average distance, average connectivity

(approx) count small subgraphs, (e.g. count triangles)

correlation and clustering
(Prob[(u, v) ∈ E | {(u, z), (z , v)} ∈ E])

global properties

(strongly) connected components, (approximated) Minimum
Dominating Set.

Diameter.

11/25

Parallel & Distributed Graph algorithms for large graphs, practical challenges

A few Graph properties, type (A+B) questions (II)

Approximated representation & compression

Find a Map f : G → Rd , l1 which “preserve” the distances
1
ρ ≤

d(x ,y)
d(f (x),f (y)) ≤ ρ (low distorsion mapping).

Find a simple Random Graph model such that G looks like a
typical event drawn from the associated distribution (bloc
models, preferential attachment models, random graph in the
Euclidian plane).

Fit G into an existing random graph model.

Determine clusters in G , Find congested cuts.

12/25

Parallel & Distributed Graph algorithms for large graphs, practical challenges

Distributed Algorithm model : Bulk Synchronous Parallel
(BSP)

Goal:

One wish to use a cluster of muti-core computer to implement
some of these algorithms.

BSP is a message-based iterative distributed algorithm. It runs a
sequence of steps. During a step:

All messages sent at the previous steps are delivered
All vertices in the graph are scheduled for execution

The algorithm stops when no messages remain.

13/25

Parallel & Distributed Graph algorithms for large graphs, practical challenges

Practical Implementation for large graphs ?

key performance factors

Can we manage to fit the graph in the RAM ?

Multi-threading ! , nef provides CPU with 48 threads.

48 cores ∼ PRAM with 48 processing unit.

Can we split the data or space search without too much
synchronization & communications.

Tricks : Sampling, Monte Carlo methods

Some properties can be derived from a sample of the graph
(select randomly a subset of V or a subset of E .

→ can work on a smaler graph that fits in the RAM.

Distant computer can work on different “chunk” of the graph.

14/25

Parallel & Distributed Graph algorithms for large graphs, practical challenges

Challenges for Distributed Algorithms

BSP framework

Each Node is assigned a set of vertices.

Processing phase = local computations, communication via
the RAM.

Update phase = communications, synchronization,

Performance collapses if the graph is random (or if the vertices are
mapped randomly on the nodes).

Γ(S)

S

Amount of communications |S|d|S| × |V\S||S| ∼ d|S|

15/25

Parallel & Distributed Graph algorithms for large graphs, practical challenges

Structured data → low communication overhead

Structure is important

There are many cases in which communications are lower.

for grid or planar network the border of a set S is only
Θ(

√
|S |).

Bad news: for most random networks |Γ(S)| = Θ(|S |).

Figure: Grid-like graph, the data is affected to 4 computing nodes.

16/25

Parallel & Distributed Graph algorithms for large graphs, practical challenges

A practical case : A snapshot of twitter

Input graph

Twitter data set (crawled by A. Legout/ INRIA -DIANA):

240GB on disk, 398M vertices, 23G edges

average degree of 58 and max degree 24,635,412

Goals

Compute the Strongly connected Components

Compute the number of TT3 and K2,2.

Compute the diameter.

17/25

Parallel & Distributed Graph algorithms for large graphs, practical challenges

Suitability of existing frameworks

mainly Two platforms: Giraph (atop Hadoop), GraphX (atop
Spark).

many flaws

limited support for graph and programming models

poor memory performance (GraphX cant load our large
Twitter graph dataset)

unreliable (GraphX again) steep learning curve (GraphX is
written in Scala) while lacking flexibility and documentation.

unsuitable for experimentation (slow startup, low monitoring,
etc)

18/25

Parallel & Distributed Graph algorithms for large graphs, practical challenges

Our own solution : The BigGrph library

Develloped since 2014 upon Grph (single computation flow
library)

a Java library for the manipulation of very big graphs.

originally developed in a joint-project of Coati , Scale and
Diani Inria teams: Inria provided a Research Engineer during 4
years.

Objective: running algorithms on bigdata -large graphs

19/25

Parallel & Distributed Graph algorithms for large graphs, practical challenges

BigGrph workflow

BigGrph’s workflow consists of:

1 deploy the executable code

2 bootstrap the application (incremental using rsync ; takes less
than a second)

3 partition the graph, by loading each piece on cluster nodes
(arbitrary only)

4 perform the duistributed computation (BSP model) .

5 get the result

20/25

Parallel & Distributed Graph algorithms for large graphs, practical challenges

List of algorithms

Single-source shortest path (Dijkstra, BFS)

iFUB (Compute the diamter using a “few” shortest path
runs).

Page Rank

Connected Strongly Connected components.

Clustering coefficients, triangle counting

Numerous stats (degrees, counting, etc)

21/25

Parallel & Distributed Graph algorithms for large graphs, practical challenges

BigGrph’s performance ?

BigGrph :

loads the graph 20x faster than Giraph

computes BFS 3x faster than Giraph , 4x faster than GraphX

uses 3x less memory than Giraph

can load the big Twitter database (even on 24GB
workstations) while GraphX cannot (even on 192GB cluster
calculators)

22/25

Parallel & Distributed Graph algorithms for large graphs, practical challenges

Limitation of BigGrph

Why we decided not to build upon Grph

Abstract high level library → memory intensive.

not designed for multi-threading.

designed to hide the implementation → not suitable for fine
tuning.

It was too complex (it took many days for our engineer to
implement the SCC algorithm

23/25

Parallel & Distributed Graph algorithms for large graphs, practical challenges

Our solution

Jmaxgrph

Just like most of others, it is written in Java, because is it the
most used, taught, clean, portable, complete
language/platform today

Low memory footprint.

Non blocking data structures

target platform: Unix 64-bit (all Linux distributions, MacOSX,

Use straightforward array stuctures.

24/25

Parallel & Distributed Graph algorithms for large graphs, practical challenges

Important side functionalities

The framework offer non core functionalities that are essential.

deploy the executable code

bootstrap the application

partition the graph, and load each piece on cluster nodes

execute in parallel, communicate

get and centralize the results

25/25

Parallel & Distributed Graph algorithms for large graphs, practical challenges

Computing strongly connected components

Tarjan algorithm cannot be implemented transparently.

Instead we compute local SCC → reduce the instance size.

The we perform 2 BFS.

Last we call the algorithm recursively.

Performance Computation time on the NEF cluster:
One node (512 GB RAM) 7:00 hours
8 nodes 3:10 (gc)
12 nodes 2:20
16 nodes 2:35 (more messages)

Largest SCC size = 256M vertices (64% of —V—); 141 M of size
1; 651,000 Of size 2; ... typical random graph phenoma of isolated
singleton or pairs.

