

Un exemple de convergence Apprentissge / Représentation des connaissances:

Extraction automatique de relations par ontologies et Programmation Logique Inductive

Bernard Espinasse¹ - Rinaldo Lima² - Fred Freitas²

¹LIS UMR CNRS 7020, Aix Marseille Université, Marseille (AMU), France bernard.espinasse@lis-lab.fr

² Federal University of Pernambuco (UFPE), Recife, Brazil rinaldo.jose@ufrpe.br

APSEM-Nov-2018

*Marseille Li5 Iniversité L'extraction d'information (EI)

Extraction Information (EI) composée de 2 tâches principales:

- La reconnaissance d'entités nommées (REN): extraire des instances d'entités nommées, Ex. des noms de personnes, de lieux;
- L'extraction de relations (RE): extraire des relations entre ces entités nommées

Soit la phrase:

"American saxophonist David Murray recruited Amidu Berry"

- Extraction des entités nommées :

"David Murray" et "Amidu Berry"

- Extraction des relations :

CITIZEN(David Murray, American) et HIRE(David Murray, Amidu Berry)

El et ressources sémantiques: OBIE

- Pour être plus **précis**, les systèmes d'IE doivent exploiter plus de **ressources sémantiques** (Nédellec & Nazarenko, 2005).
- Emergence de l'El basée sur des **ontologies Ontology-Based Information Extraction OBIE** (Wimalasuriya et Dou, 2010) :
 - Ontologie en entrée : processus d'extraction guidé par une ontologie avec une annotation sémantique des textes à traiter
 - Ontologie en sortie: utilisation d'une ontologie pour représenter et stocker les informations extraites par peuplement d'une ontologie
- L'OBIE permet aussi :
 - D'exploiter un traitement du langage naturel en profondeur
 - De générer automatiquement des contenus sémantiques pour le Web sémantique (Wu and Weld, 2008)

El et apprentissage automatique

- Pour être plus rapidement développés et adaptables à d'autres domaines d'application, les systèmes d'El utilisent des techniques d'apprentissage automatique:
- Apprentissage supervisé statistique largement utilisé :
 - REN: très bonne performance, autour de 90%,
 - ER: performance très nettement inférieure (Giuliano et al., 2007) (Bach et Badaskar, 2007), et peu de progrès réalisé depuis un certain temps.
 - Problème de l'explicabilité
- Apprentissage profond travaux en cours, pas encore performant
 - Usage de Word Embedding plongement lexical)
 - Problème de l'explicabilité et l'interprétabilité
- Apprentissage supervisé <u>symbolique</u>, avec une de ses techniques: la Programmation Logique Inductive (PLI)

Programmation Logique Inductive (PLI)

- La Programmation Logique Inductive (PLI-Inductive Logic programming) est une technique d'apprentissage symbolique (Muggleton, 1991)(Lavrack&Dzeroski, 1994) Relational & Logical Learning
- En apprentissage supervisé, la PLI utilise les clauses du premier ordre pour obtenir une représentation expressive uniforme des exemples, de la base de connaissances et des hypothèses (règles)
- Cette representation :
 - Est plus expressive que la représentation attribut-valeur (propositionnelle) des méthodes d'apprentissage statistiques
 - Permet un traitement de la langue naturelle plus profond
 - Permet une intégration facile et naturelle de connaissances de domaine (ontologie, thésaurus, ...) au processus d'apprentissage
- La PLI est très proche des ontologies et du Web sémantique

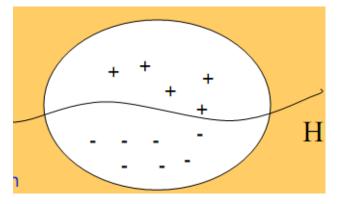
Apprentissage supervisé d'un classifieur basé sur la PLI

Entrée:

- Base de connaissance ou "Background Knowledge" (BK)
- Un ensemble E d'exemples positifs et négatifs d'apprentissage
- Une étiquette de classification c pour chaque exemple d'apprentissage

Sortie:

 Une théorie logique ou Hypothèse H séparant les exemples positifs des exemples négatifs



Apprentissage d'une règle en PLI

BK

Intentional:

- parent(X, Y) :- father(X,Y).
- parent(X, Y) :- mother(X,Y).

Extensional:

- father(pat,ann).
- father(tom,sue).
- female(ann).
- female(eve).
- female(sue).
- male(pat).
- male(tom).
- mother(eve, sue).
- mother(ann,tom).

Entrée

Examples:

Positive:

- daughter(sue,eve).
- daughter(ann,pat).

Negative:

- daughter(tom,ann).
- daughter(eve,ann).

Sortie

daughter(D,P) :- parent(P,D), female(D).

Le prédicat **daughter** est induit à partir des exemples positifs et négatifs, ainsi que des prédicats **parent** et **female** déclarés dans la BK

Travaux reliés

La PLI est déjà utilisé en IE, principalement en RE:

- (Seneviratne & Ranasinghe, 2011): extraction d'une seule relation (located_in) sur un petit corpus de 13 pages de Wikipédia sur les oiseaux.
- (Smole et al., 2011): apprentissage de règles pour extraire des informations à partir des définitions d'entités géographiques dans le texte (en langue slovène) pour l'extraction des 5 relations les plus fréquentes en 1308 définitions d'entités spatiales
- **(Kordjamshidi et al., 2012)**: « Spatial Role Labeling SpRL", en combinant klog (P. Frasconi et al., 2014) enrironnement d'apprentissage relationnel basé sur les noyaux et un classificateur SVM.

Mais les corpus traités, le nombre de relations extraites et les performances sont limités.

Le système OntolLPER

OntoILPER permet l'extraction d'instances d'entités nommées (REN) et de relations binaires (RE) de textes en anglais

OntolLPER repose sur:

- ■Un modèle relationnel des phrases basé sur un graphe des dépendances (Marneffe&Manning, 2008), traitées comme des prédicats logiques
- •Un processus d'apprentissage basé sur la PLI, induisant des règles d'extractions symboliques
- ■Une ontologie de domaine :
 - **■En entrée**: permet de *choisir les concepts* qui doivent être peuplés
 - **En sortie** : est peuplée par les instances extraites
- •Une ontologie d'annotation :
 - Permet de stocker les annotations
 - Utilisée pour appliquer les règles d'extraction

Architecture d'OntolLPER

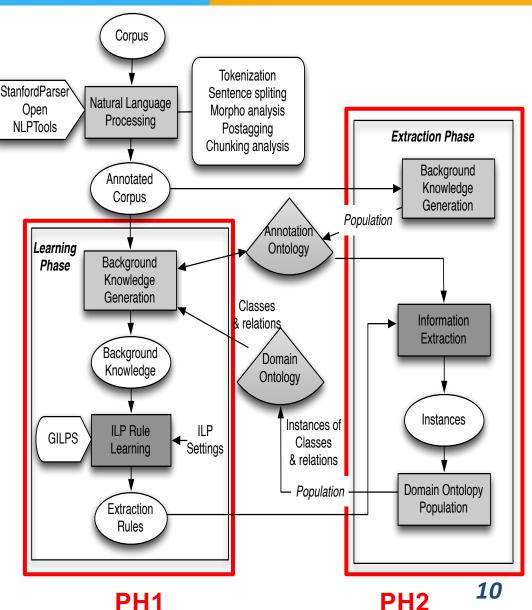
2 phases:

– PH1-Phase d'apprentissage: Induction de règles symboliques d'extraction par PH

– PH2- Phase d'extraction: Extraction d'information par application de ces règles

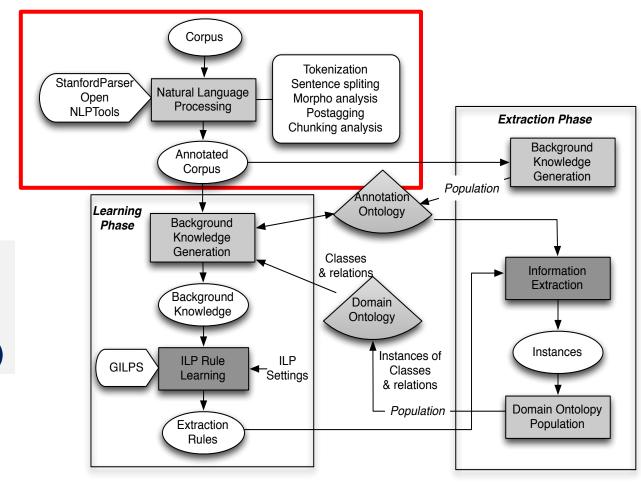
Composants majeurs:

- TAL
- Génération des connaissances de base (BK – Background Knowledge)
- Apprentissage des règles (PLI)
- Application des règles
- Peuplement de l'ontologie de domaine



PH₂

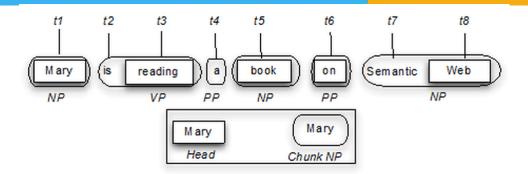
PH1 & PH2: Composant TAL (1)



Composant de traitement automatique du langage naturel (TAL)

Aix*Marseille L i 5

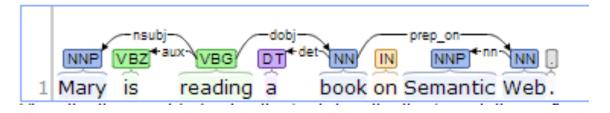
PH1 & PH2 : Composant TAL (2)



Ce component utilise les outils Stanford CoreNLP & Open NLP

Dependency Graph

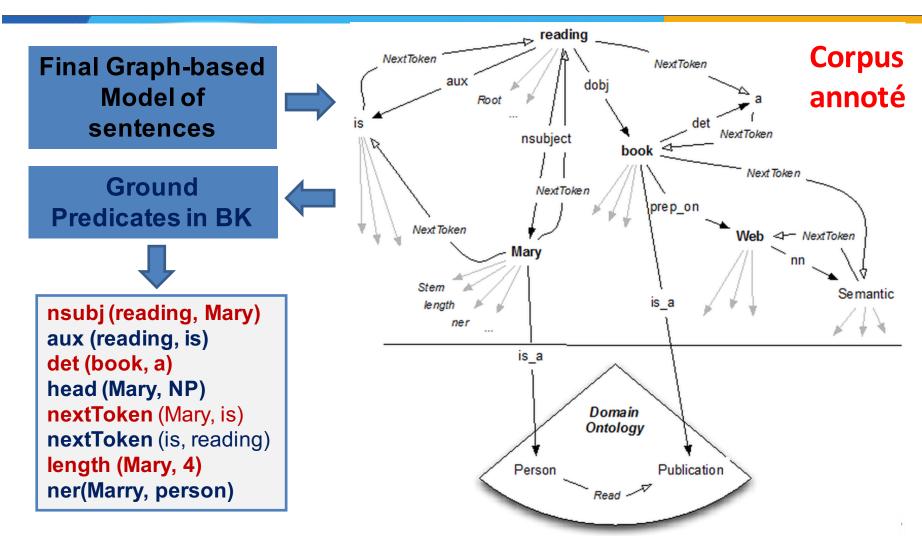
Collapsed CC-processed dependencies:



Il réalise: séparation de phrases, tokenisation, étiquetage morphosyntaxique (POS tagging, lemmatisation, analyse de chunks), extraction d'entités nommées (NER) et analyse des dépendances.

Aix*Marseille L i 5

PH1 & PH2: Composant TAL (3)



Phrase: « Mary is reading a book on Semantic Web »

Processing

Annotated

Corpus

Background Knowledge Generation

Background

Knowledge

ILP Rule

Learning

Extraction

Rules

Open

NLPTools

Learning Phase

GILPS

PH1: Génération des connaissances de base (BK)

Extraction Phase

Population

Background

Knowledge

Generation

Information Extraction

Instances

Domain Ontolopy

Population

Morpho analysis

Postagging

Chunking analysis

Classes & relations

Settings

Ontology

Domain

Ontology

Instances of

Classes

& relations

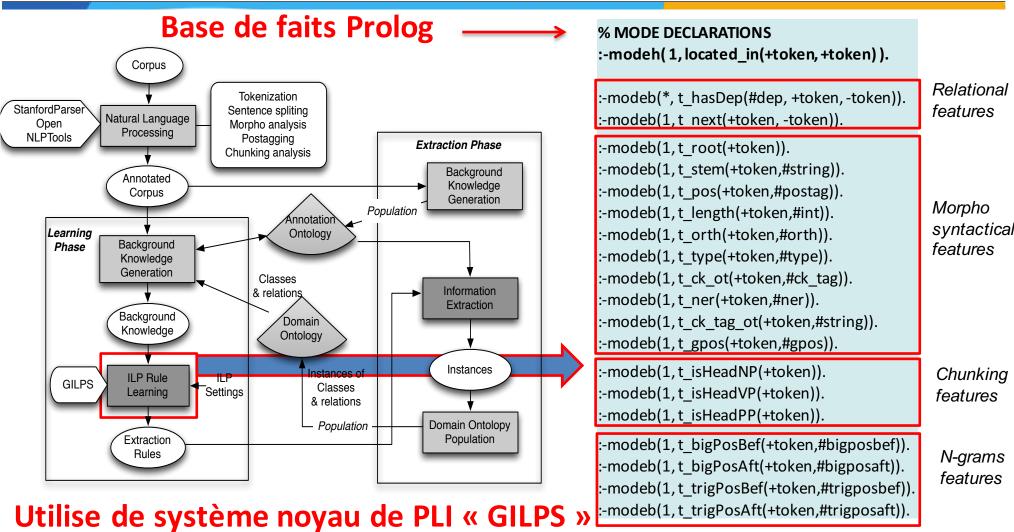
Population

PROLOG PREDICATES FOR THE TOKEN "MARY" (T 1)

Predicates Generated	Meaning
token (t_1)	t_1 is the token identifier
t_dep (nsubj, t_3, t_1)	there is a noun subject dependency be- tween token t_3 and t_1
t_next (t_1, t_2)	token t_2 follows token t_1
t_stem (t_1, "Mary")	the stemming of the token t_1 is "Mary"
t_length (t_1, 4)	t_1 has length of 4
t_orth (t_1, upperInitial)	t_1 has an initial uppercase letter
t_type(t_1, word)	t_1 is a word
t_pos (t_1, nnp)	t_1 is a singular proper noun
t_ner (t_1, person)	t_1 is a person entity
t_root (t_3)	t_3 is the root of the dependency graph
t_bigposbef (t_n,)	POS tag bigram of the tokens after t_n
t_bigposaft (t_1, vbz-vbg)	POS tag bigram of the tokens before t_1
t_trigposbef (t_n,)	POS tag trigram of the tokens before t_n
t_trigposaft (t_1, vbz-vbg- dt)	POS tag trigram of the tokens after t_1
t_isHeadNP (t_1)	t_1 is the head of the nominal chunking
t_isHeardVP (t_n)	t_n is the head of the verbal chunking
t_isHeardPP (t_n)	t_n is the head of the prepositional chunking
t_ck_tag (t_1, NP)	t_1 is part of a nominal chunking

Base de faits Prolog

PH1: Composant PLI d'apprentissage de règles



Utilise de système noyau de PLI « GILPS » (Santos 2010)

Exemples de règles d'extraction induites

Règle pour la relation "located_in":

- •located_in (A,B):- t_class(A, loc), t_next(A, B), t_class(B, loc).
 - → Cette règle caractérise le patron "City, Country", ex. "Marseille, France"
- •located_in (A,C) :- t_next(A,B), t_next(B, C), t_ner(A, org), t_class(C, loc).
- → Cette règle caractérise le patron "ORG, [at|in|on] LOC", ex. "White House in USA"

. . .

Règles pour d'autres relations:

- •part_whole (A,B):- t_gpos(A, nn), t_next(A, B), t_subtype(B, state-or-province).
- •part_w(A,B):- t_next(A,B), t_pos(A,nnp), t_ne_type(B,gpl), t_subtype(A,pop-center).
- •live_in(A,B):- t_pos(A,nn), t_class(A, person), t_hasDep(amod,B,C), t_next(C,B), t_class(B, loc), t_isHeadNP(B).

Ces règles sont compréhensibles (et modifiables) par des humains ...

Protocole expérimental

2 corpus de références : reACE 2004/2005 datasets (broadcast news):

Relation
Type &
Subtype

reACE 2004 - Relation Type/Subtype Hierarchy	Freq			
Employee-Membership-Subsidiary (EMP ORG)				
Employee-Staff	303			
Employee-Executive	220			
Member-of-Group	80			
General-Affiliation (GEN_AFF)				
Located	352			
Citizen-Resident-Religion-Ethnic	98			
Part-Whole (PRT_WHOLE)				
Part-Whole	174			
Subsidiary	100			
Personal-Social (PER_SOC)				
Business	35			
Family	15			
Total	1377			

reACE 2005 - Relation Type/Subtype Hierarchy	Freq				
Organization-Affiliation (ORG AFF)					
Employment	228				
Membership	36				
General-Affiliation (GEN AFF)					
Located	280				
Citizen-Resident-Religion-Ethnic	39				
Part-Whole (PRT WHOLE)					
Geographical	119				
Subsidiary	47				
Personal-Social (PER SOC)					
Business	16				
Family	42				
Total	807				

- Métriques d'évaluation : Precision (P), Recall (R) et F1-measure (F1)
- Theory Compression Ratio (mesure de généralité de la règle pour éviter le sur-apprentissage:

TCR = <u>Nb de règles dans la théorie apprise</u> nb d'exemples positifs dans l'ensemble d'apprentissage

5 validations croisées

Aix*Marseille L ; 5 Contribution des "features":

Quelle combinaison de BK linguistique est la meilleure ?

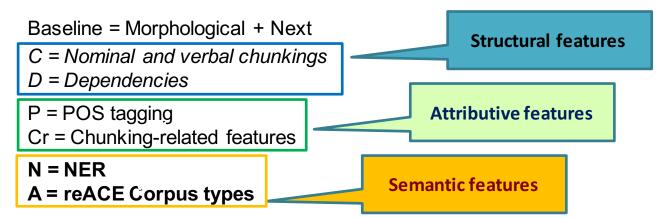
		reACE 2004			reACE 2005		
ID	Features	P	R	F1	P	R	F1
1	Baseline	81.09	39.81	53.40	60.53	25.12	35.52
2	+C	80.17	47.13	59.36	75.05	34.03	46.80
3	+D	81.01	46.93	59.43	72.91	36.51	48.65
4	+D+C	89.01	54.40	67.53	74.81	38.14	50.48
5	+D+C+P	91.16	62.04	73.83	81.75	44.24	57.37
6	+D+C+P+Cr	93.30	66.68	77.77	83.68	50.43	62.91
7	+D+C+P+Cr +N	93.04	67.12	77.99	80.59	51.39	62.68
8	+D+C+P+Cr+ A	92.20	71.13	80.31	83.03	63.38	71.86
9	+D+C+P+Cr +A+N	92.91	73.07	81.80	82.30	61.85	70.62

P = Precision

R = Rappel

F1= F1-measure

Relation subtypes



Résultats de classification sur

les sous-types de relations et les relations-types (1)

PERFORMANCE RESULTS OF RELATION SUBTYPES ON BOTH DATASETS

Relation
subtypes

	reACE 2004				reACE 2005				
Rel. Type	Rel. Subty	ре	Р	R	F1	Rel. Subtype	Р	R	F1
	Employ-Sta	aff	78.10	86.90	82.27	Employ	89.60	86.22	87.88
EMP_ORG	Employ-Ex	ec	95.49	77.00	85.25	-	-	-	-
	Member		92.18	76.82	83.80	Member	94.30	71.03	81.03
GEN_AFF	Citizen-Resident		98.81	69.58	81.66	Citizen-Resident	100.00	61.10	75.85
	Located		83.28	80.09	81.65	Located	86.00	84.10	85.04
PERS_SOC	Business	Business		69.42	81.95	Business	0.00	0.00	0.00
	Family		100.00	39.11	56.23	Family	92.70	51.70	71.13
PRT_WHL	Part-Whole	;	93.20	83.38	88.02	Geo	100.00	62.10	78.62
	Subsidiary		95 10	75 30	84 05	Subsidiary	95.80	72.51	82.54
		Avg	92.91	73.07	81.80	Avg	82.30	61.85	70.62

Il est plus difficile de classifier à un niveau détaillé (sous-type de relation)

Relation types

Avg

CLASSIFICATION RESULTS OF RELATION TYPES ON THE REACE 2004

0.18 90.98

77.23 83.54

CLASSIFICATION RESULTS OF RELATION TYPES ON THE REACE 2005

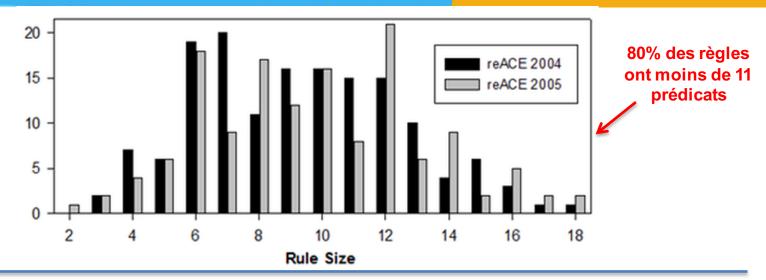
Rel. Type	#E+	#Rules	TCR	Р	R	F1
EMP_ORG	603	65	0.11	86.00	84.00	84.99
GEN_AFF	450	51	0.11	86.90	78.90	82.71
PER_SOC	50	18	0.36	100.00	64.40	78.35
PRT_WHL	274	33	0.12	91.00	81.60	86.04
Total	1377	167				

Rel. Type	#6+	Rules	ICR	Ρ	ĸ	F1
ORG_AFF	264	38	0.14	88.70	77.80	82.89
GEN_AFF	319	60	0.19	94.40	70.40	80.65
PER 800	58	19	0.33	100.00	58.30	73.66
PRT_WHL	166	35	0.21	87.60	72.30	79.22
Total	807	152				
Avg			0.22	92.68	69.70	79.56

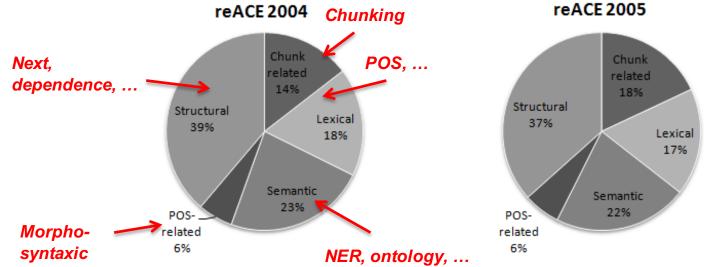
L i 5 Analyse des règles induites :

Aspects qualitatifs des règles apprises

Distribution de la taille des règles



Ratio des types des prédicats dans l'ensemble des règles induites



Conclusion - Perspectives

Optimisation:

- Utilisation de méthodes d'ensemble, pour améliorer les performances du processus d'apprentissage (PH1)
- Utilisation d'un triple-store et des techniques du Web Sémantique pour améliorer l'application des règles symboliques dans le processus d'extraction (PH2)
- Usage de nouveaux algorithmes de PLI (ParProGolem, ...)
- Usage du parallélisme (Prolog parallèle, ...), Map-Reduce, cartes GPU, ...

Extensions:

- Intégration de plus de connaissances dans la BK au niveau du prétraitement, pour prendre en compte les aspects sémantiques (prédicats sur les synonymes, hypernyms / hyponymes, rôles sémantiques ...)
- **Extraction d'évènements** : passage de l'extraction de relations binaires à l'extraction de relations n-aires (Event Extraction)
- Utilisation de représentations plus riches : Abstract Meaning Representation, ...

Pour aller plus loin: publications associées ...

Revues:

- R. Lima, R.; Espinasse, B.; Freitas, F. (2018), « A Logic-based Relational Learning Approach to Relation Extraction: the OntoILPER System ». Journal of Engineering Applications of Artificial Intelligence Elsevier (**EAAI**) (accepted for publication).
- R. Lima, B. Espinasse, F. Freitas (2017), « An Ontology-and inductive logic programming-based system to extract entities and relations from text ». Knowledge And Information System (KAIS) Journal, Springer-Verlag, v. 54, p. 1-33, Springer-Verlag, 2017. https://doi.org/10.1007/s10115-017-1108-3.
- ■B. Espinasse, R. Lima, F. Freitas (2016), « Extraction automatique d'entités et de relations par ontologies et programmation logique inductive », in: Revue d'Intelligence Artificielle (RIA), Vol. 30 (n° 6/2016), dec 2016 (Répertoriée Scopus et DBLP).

Conférences:

- ■B. Espinasse, Lima R., Magdy D., « Extraction automatique d'entités et de relations par ontologies et programmation logique inductive », Journée Francophones sur les Ontologies **JFO 2016**, 13-14 Octobre 2016, Bordeaux, France..
- R. Lima, S. B. Espinasse, F. Freitas « Relation Extraction from Texts with Symbolic Rules Induced by Inductive Logic Programming », IEEE International Conference on Tools with Artificial Intelligence, IEEE-ICTAI 2015, Vietri sul Mar, Italy, 9-11 nov. 2015.
- •R. Lima, B. Espinasse, H. Oliveira, F. Freitas « Ontology Population from the Web: an Inductive Logic Programming-Based Approach », 11th International Conference on Information Technology: New Generations, **ITNG 2014**, Las Vegas, Nevada, USA, April 7-9, 2014.
- ■R. Lima, B. Espinasse, H. Oliveira, L. Pentagrossa, F. Freitas, « Information Extraction from the Web: An Ontology—Based Method using Inductive Logic Programming », IEEE International Conference on Tools with Artificial Intelligence, IEEE-ICTAI 2013, Washington DC, USA, November 4-6, 2013.
- •R. Lima, B. Espinasse, H. Oliveira, R. Ferreira, L. Cabral, F. Freitas, R. Gadelha, « An Inductive Logic Programming-Based Approach for Ontology Population from the Web », **DEXA 2013**, Prague, Czech Republic, August 26-29, 2013.