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Introduction

Supervised classification

• We have a set of labeled examples

{xi , yi}ni=1
i .i .d .∼ P(x, y) x ∈ X , y ∈ Y

• We need to learn a function f : X 7→ Y that predicts y = f (x)

on future data x with (x, y)
i .i .d .∼ P(x, y)

• The learned function can be linear y = argmaxy∈Y wyx or
non-linear, learned from a neural network.

• Crucially, Y is a set of usually few classes that are distinct
between them.



Structured prediction

What happens when y ∈ Y is a complex object?

• y can be a sequence
x = John saw Mary with the telescope
y = noun verb noun preposition article noun

• y can be a tree or a graph
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Structured prediction (cont.)

• If we consider y as a separate class for every
sequence/tree/graph then we can have exponentially many
classes!

• There are various ways to perform structured output
prediction:
• Decoding over a local probability distribution
• Using the kernel trick in SVMs
• Using an approach similar to SparseMap (Niculae et al. 2018)



Discourse for multi-party dialogues

• Discourse parsing for monologues has been extensively
investigated

• Discourse parsing for other forms of human communication on
the other hand has not received the same attention from the
computational linguistics community



The Settlers of Catan
A board game where 2-4 players compete for establishing
settlements and roads on an island, gathering and negotiating
resources in the process.



A sample dialogue
Our input

65 lj anyone want sheep for clay?
66 gw got none, sorry :(
67 gw so how do people know about the league?
68 wm no
70 lj i did the trials
74 tk i know about it from my gf
75 gw [yeah me too,]a

[are you an Informatics student then, lj?]b
76 tk did not do the trials
77 wm has anyone got wood for me?
78 gw [I did them]a [because a friend did]b
79 gw lol william, you cad
80 gw afraid not :(
81 lj no, I’m about to start math
82 tk sry no
83 gw my single wood is precious
84 wm what’s a cad?



Dependency graph
Our target
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Concurrent discussions

165 lj anyone want sheep for clay?
166 gw got none, sorry :(
167 gw so how do people know about the league?
168 wm no
170 lj i did the trials
174 tk i know about it from my gf
175 gw [yeah me too,]a

[are you an Informatics student then, lj?]b
176 tk did not do the trials
177 wm has anyone got wood for me?
178 gw [I did them]a [because a friend did]b
179 gw lol william, you cad
180 gw afraid not :(
181 lj no, I’m about to start math
182 tk sry no
183 gw my single wood is precious
184 wm what’s a cad?



Concurrent discussions
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A smaller example

1 Alice anyone got wheat for a sheep?
2 Bob sorry, not me
3 Clara nope. you seem to have lots of sheep!
4 Dan i think i’d rather hang on to my wheat i’m afraid
5 Alice kk I’ll take my chances then...

1

2 3 4

5

Question-Answer Pair
QAP

Question-Answer Pair

Acknowledgement
Ack.

Acknowledgement
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How can we represent dialogue?

• Penn Discourse TreeBank (PDTB) uses directed edges,
without structural constraints

• Rhetorical Structure Theory (RST) represents discourse as
trees, which is too restrictive

• Segmented Discourse Representation Theory (SDRT) uses
two-layered directed acyclic graphs

SDRT’s flexible structure is best suited for chats
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SDRT graphs

Given a discourse segmented in EDUs, an SDRT graph is a tuple
(V ,E1,E2, `), where

• Vertex set V contains discourse units (DUs)

• Edge set E1 contains discourse relations between DUs

• Edge set E2 represents Complex Discourse Units (CDUs)

• Function ` assigns a label to discourse relation edges



Complex Discourse Units

Example
Alice [Do you have a sheep?]a
Bob [I do,]b [if you give me clay]c
Bob [or wood.]d

a b c d
QAP Conditional Alternation



Complex Discourse Units (cont.)

[Principes de la
sélection naturelle.] 1
[La théorie de la
sélection naturelle [telle
qu’elle a été initiale-
ment décrite par Charles
Darwin,] 2 repose sur
trois principes:] 3 [1.
le principe de varia-
tion] 4 [2. le principe
d’adaptation] 5 [3. le
principe d’hérédité] 6

1

π1

3

π22

4 5 6

Elab.

Elab.e-elab.

C. C.



Complex Discourse Units (cont.)

A more complicated example
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Complex Discourse Units (cont.)

No reliable method has been identified in the literature for
identifying CDUs.
We approximate CDUs in the SDRT hypergraph by relations
between EDUs only, thus creating a dependency graph.



Distributing relations
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Full distribution
All relations distribute to
every component
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Discourse structure annotation

• 4 naive annotators where involved; they were trained on 22
negotiation dialogues with 560 turns.

• 0.72 kappa on structure and 0.58 kappa on labelling

• Expert annotators adjudicated the naive annotators.

• Adjudication involved five separate phases

Dataset overview:

Total Training Testing

Dialogues 1081 965 116
Turns 9160 8166 994
edus 10678 9546 1132
Relation instances 10513 9421 1092
cdus 1284 1132 152

A dialogue includes a negotiation phase during a game
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Distribution of annotated relations
Total Training Testing

Comment 1851 1684 167
Clarification question 260 240 20
Elaboration 869 771 98
Acknowledgment 1010 893 117
Continuation 987 873 114
Explanation 437 407 30
Conditional 124 105 19
Question-answer pair 2541 2236 305
Alternation 146 128 18
Q-Elab 599 525 74
Result 578 551 27
Background 61 58 3
Narration 130 116 14
Correction 212 189 23
Parallel 215 196 19
Contrast 493 449 44

TOTAL 10513 9421 1092



Learning structures vs Local Models

Ideally:
h : XEn 7→ YG

Realistically:
h : XE2 7→ YR



Problems with this approach

• We have no guarantees that structures will be well formed

• graphs might be disconnected

• we might have cycles

• the Right Frontier Constraint might not be respected

• etc.



How can we alleviate this problem?

Do structured decoding over local probability distributions

• Maximum Spanning Trees (MST)

• Integer Linear Programming (ILP)



Maximum Spanning Trees (MST)



Local Probability Distributions

We used a regularized Maximum Entropy model:

P(r |p) =
1

Z (c)
exp

(
m∑
i=1

wi fi (p, r)

)



Features used
Category Description

Positional Speaker initiated the dialogue
- First utterance of the speaker in the dialogue
- Position in dialogue
- Distance between EDUs
- EDUs have the same speaker

Lexical Ends with exclamation mark
- Ends with interrogation mark
- Contains possessive pronouns
- Contains modal modifiers
- Contains words in lexicons
- Contains question words
- Contains a player’s name
- Contains emoticons
- First and last words

Parsing Subject lemmas given by syntactic dependency parsing
- Dialogue act according to (Cadilhac et al, 2013)



The turn Constraint

• Within a turn people can have a full discourse model,
including backward links

• Outside turns, we cannot have backward links

Example:

Although he was very tired, he still came to the meet-
ing.

• We thus build two different local models applying this
constraint
• Intra-turn: training contains all pairs of EDUs (i , j) with i 6= j
• Inter-turn: training contains all pairs of EDUs (i , j) with i < j

• We apply it during decoding also
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Decoders

• Baseline decoder (Local)

r̂ = argmax
r

(
1

Z (c)
exp

(
m∑
i=1

wi fi (p, r)

))

• Maximum Spanning Trees (MST)

T ∗ = argmax
T a spanning tree of G

∑
e∈E(T )

w(e)

w(e) = log

(
p(e)

1− p(e)

)



Evaluation F1 scores on test corpus

Method Unlabelled Labelled

Last 0.584 0.391
Local 0.483 0.429
MST 0.671 0.516



Integer Linear Programming (ILP)



Integer Linear Programming: an
introduction

We define an optimization problem where all variables are integers:

maximize cT x

subject to Ax ≤ b

x ≥ 0

and x ∈ Zn

• Structural freedom

• Easy to parametrize

• Versatile constraints on need



Our model

Pair modelization: Maximum Entropy model

The model provides us with two real-valued functions:

sa : [1..n]2 7→ [0, 1]

sr : [1..n]2 × [1..m] 7→ [0, 1]

Graph building: Integer Linear Programming

maximize
∑
i

∑
j

(
aijsa(i , j) +

∑
k

rijksr (i , j , k)

)
subject to our set of constraints



Structural constraints

• Acyclicity

• Unique root

• Connectedness

• Turn Constraint



Edge count bounds

Outgoing edge cap

An utterance can elicit a limited number of reactions:

∀i
∑
j

aij ≤ ω

Density cap

An unbounded number of edges would result in a near-complete
graph, as the objective function is increasing.∑

i

∑
j

aij ≤ δ(n − 1)
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Evaluation F1 scores on test corpus

Method Unlabelled Labelled Edge count

No distribution 10191
Last 0.584 0.391
Local 0.483 0.429
MST 0.671 0.516
ILP 0.689 0.531

Partial distribution 11734
Last 0.593 0.426
Local 0.471 0.396
MST 0.647 0.488
ILP 0.668 0.519

Full distribution 13675
Last 0.582 0.420
Local 0.541 0.443
MST 0.613 0.466
ILP 0.675 0.527



Neural network architecture

es−3 es−2 es−1 es et−3 et−2 et−1 et

bi-LSTM bi-LSTM

−−→
hs−3;

←−−
hs−3; . . . ;

−→
hs ;
←−
hs

−−→
ht−3;

←−−
ht−3; . . . ;

−→
ht ;
←−
ht

feed forward

sigmoid



Evaluation

Bi-LSTM MST Decoding
P R F1 P R F1

LAST 50.26% 64.31% 56.42% - - -
Distance 1 9.10% 18.24% 12.14% 14.88% 19.04% 16.70%
Distance 2 52.49% 57.58% 54.92% 50.98% 65.22% 57.22%
Distance 3 52.12% 62.82% 56.98% 51.60% 66.02% 57.92%
Distance 4 57.35% 55.98% 56.66% 52.22% 66.81% 58.62%



Future work

• Use the learned representations as input to an SVN structured
prediction framework (joint work with Phuong Nguyen,
Edouard Pauwels and Mathieu Serrurier)

• Disentangle threads of conversations.

• Perform semi-supervised learning (joint work with Luce Le
Gorrec and Sandrine Mouysset)


