
PYACQ
A python framework for acquisition and monitoring experiment: the distributed way

1

OUTLINES
Goals
Overview
Nodes list
Demo

2

GOALS

3

BUILD SETUPS IS LONG
Drive several devices in parralel
Make severals materials speaking together
Deeling with large data
Having a good monitoring during experiment

4

EXPERIMENTAL SETUP EXAMPLE
Charaterize place cells during experiments:

Grab multichannel
Grab cam images
Do rougth spike sorting
Do rougth animal tracking
Estimate and plot cells density

5

INGENEER POINT OF VIEW
Making differents so�ware working together is hard.
Lab so�wares are very specifics. They o�en do not exists.
So : I do not need So�ware but modules to build them.

6

HIGH COMPUTATIONS
Need of several machine or CPU/GPU
Need of scaling the computational cost

7

PYACQ OVERVIEW

8

DISTRIBUTED DATA ACQUISITION + STREAM PROCESSING
SYSTEM

Graph of Nodes

Camera

Electrode
Array

Data
Storage

Spike
Sorter

Video
Monitor

Oscilloscope

9

DISTRIBUTE NODES ACROSS
thread
process
machine

Signals input

Machine 1

Machine 2

Spike sorting chan 0-100

Spike sorting chan 100-200

Machine 3

Spike sorting chan 200-300

10

SIMPLE END USER'S CODE

import pyacq

Connect to a remote host and create a new process there
manager = pyacq.create_manager('rpc')
worker_host = manager.add_host('tcp://10.0.0.103:5678')
worker = worker_host.create_nodegroup()

Create nodes for data acquisition, analysis, storage, and display
device = manager.create_node('NiDAQmx')
analyzer = manager.create_node('Spikesorter', host=worker)
recorder = manager.create_node('HDF5Recorder', host=worker)
viewer = manager.create_node('QOscilloscope')

Connect all nodes together
analyzer.input.connect(device.output)
recorder.input.connect(analyzer.output)
viewer.input.connect(analyzer.output)

Begin acquiring and streaming data
manager.start_all()

11

FAST DATA TRANSFER BETWEEN NODES
On top on zmq.

Several senarios for data transfer:
full data in message
compressed or not
no copy if in same thread
shared memory in same machine

12

ALL NODES ARE REMOTE CONTROLLED
RPC = Remote Precedure Call

Manager

Node 1

Node 2

RPC

RPC

13

PERFORMANCE
Pyacq focused on:

Easy for dev
Distribution

If high performance needed, Node can be writeen in C cuda, opencl, ...

14

NODE LIST: ACQUISITION
National Instruments IO cards
Measurement computing IO cards
Webcam
EEG systems : Emotiv, BrainAmp, (OpenEEG)
Blackrock
Multichannel system
To be done : Intan board (and OpenEphys)

15

NODE LIST: PROCESSING
Filters (with scipy or OpenCL)
Threshold detection (=Trigger)
Trigger average

16

NODE LIST: VISUALISATION
Oscilloscope
Time Frequency (morlet) viewer
Trigger average (ERP)

17

AND OF COURSE: CREATE YOUR CUSTUM NODE
Et soyez, vous aussi le roi des noeuds.

18

EXAMPLE : TELEMIR

19

EXAMPLE : TELEMIR

20

DEMO

21

CONLUSION
Download it: https://github.com/pyacq/pyacq
Build your own so�ware
Share your pyacq nodes
It is open source!!!

22

OTHER DEVS
Luke (Alen Institute)

23

