
Composition and concurrent execution of
heterogeneous domain-specific models
A work part of the GEMOC initiative

Benoit Combemale
Associate Professor, University of Rennes 1
Research Scientist, INRIA
benoit.combemale@irisa.fr

Journée IDM et modèles scientifiques, 18 octobre 2013

TRISKELL - team

2

Research in software
engineering.
-  9 faculty members
-  ~ 40 researchers and

engineers on projects

Triskell’s Research Foundations / Topics

3

MDE

RE,
runtime V&V

Application domains

4

Software
intensive
systems

Context

5

Open
environments

Heterogeneous
environments

Distributed
systems

Dynamic
systems

Software
intensive
systems

Open
environments

Heterogeneous
environments

Distributed
systems

Dynamic
systems

Software
intensive
systems

Objectives

6

Model-driven
software engineering

to handle diversity

Open
environments

Heterogeneous
environments

Distributed
systems

Dynamic
systems

Software
intensive
systems

Approach

7

Continuous design
for

Heterogeneous, variable,
adaptive within reasonable

correctness boundaries

Aspect Oriented Model Driven Engineering

8

Distribution

Fault tolerance

Security

Functional behavior

Book
state : String User

borrow

return

deliver

setDamaged

reser
ve

Use case model

Platform

Model
Design
Model

Code
Model

AOMDE = Pleonasm!
A model is an abstraction of an
aspect of reality for a given purpose

Change one aspect and
Automatically re-weave:
From Software Product Lines…
 ..to Dynamically Adaptive Systems

"DSLs are far more prevalent
than anticipated"

[Hutchinson et al., ICSE’11]

Aspect Oriented Model Driven Engineering

9

Distribution

Fault tolerance

Security

Functional behavior

Book
state : String User

borrow

return

deliver

setDamaged

reser
ve

Use case model

Platform

Model

Act1:
Separation of Concerns

=> Language Engineering

Problem
Space Solution

Space

Assembler

C, Java

DSLs

Abstraction
Gap

Domain-Specific (Modeling) Language ?
• "Language specially designed to perform a task in a
certain domain"

• "A formal processable language targeting at a specific
viewpoint or aspect of a software system. Its semantics
and notation is designed in order to support working
with that viewpoint as good as possible"

• "A computer language that's targeted to a particular
kind of problem, rather than a general purpose language
that's aimed at any kind of software problem.”

11

A GPL provides notations that are used to describe a computation in a
human-readable form that can be translated into a machine-readable
representation.

A GPL is a formal notation that can be used to describe problem
solutions in a precise manner.

A GPL is a notation that can be used to write programs.

A GPL is a notation for expressing computation.

A GPL is a standardized communication technique for expressing
instructions to a computer. It is a set of syntactic and semantic rules
used to define computer programs.

GPL (General Purpose Language)

General PLs vs Domain-SLs

The boundary isn’t as clear as it could be. Domain-
specificity is not black-and-white, but instead gradual: a
language is more or less domain specific

GeneralPL vs DomainSL

"Another lesson we should have learned from the recent past is
that the development of 'richer' or 'more powerful' programming
languages was a mistake in the sense that these baroque
monstrosities, these conglomerations of idiosyncrasies, are really
unmanageable, both mechanically and mentally.

I see a great future for very systematic and
very modest programming languages"

ACM Turing Lecture, "The Humble Programmer"
Edsger W. Dijkstra 14

aka Domain-
Specific
Languages

aka General-Purpose
Languages

1972

15

2011
"Domain-specific
languages are far more
prevalent than anticipated"

Domain-Specific (Modeling) Language

16

Editors
(textuals, graphicals, …)

Documentation generators

Test generators

Simulators

Analyzers

Refactoring

Checkers
(static & dynamics)

Translators

Compilers

Code generators

Etc.

External DSLs vs. Internal DSLs
• An external DSL is a completely separate language and with its

own custom syntax/tooling support (e.g., editor, compiler)
Language worbenches: Eclipse modeling (EMF, xText, GMF, Sirius, Kermeta,
xCore/xTend…), DSL Tools, Meta Edit+, MPS, GME, Neverlang, Delite, etc.

• An internal DSL is more or less a set of APIs written on top of a
host language
Extension mechanisms: xTend’s active annotation, Scala’s LMS, extensions
methods (e.g., xTend, Kotlin, Scala-Virtualized), plain-old java annotation or even
fluent interfaces!

⇒  DSL technology is here (no excuse)
⇒  Related fields: generative programming, product lines

17

External DSLs vs. Internal DSLs

• Both internal and external DSLs have
strengths and weaknesses
•  learning curve,
• cost of building,
• programmer familiarity,
• communication with domain experts,
• mixing in the host language,
• strong expressiveness boundary

18

Textual DSLs vs. Graphical DSLs

19

Eclipse Modeling

20

EMF-based Tools
(68 matches in

September, 2012)

The Kermeta Language Workbench [SoSyM’13]

• Modular design of DSMLs
•  One meta-language per language concern (require)

•  Ecore, OCL, Kermeta Action Language
•  But also: QVTo, fUML, Alf, Ket, Xsd…

•  Static introduction mechanism (aspect)

• Efficient implementation of DSMLs
•  Mashup of the meta-languages to efficient bytecode
•  Integrated with third-party tools (EMF compliant)

• Current investigations: precise metamodeling, modeling in the
large, language family, multi-platforms, model comprehension…

-
2
1

Aspect Oriented Model Driven Engineering

22

Distribution

Fault tolerance

Security

Functional behavior

Book
state : String User

borrow

return

deliver

setDamaged

reser
ve

Use case model

Platform

Model
Design
Model

Code
Model

Act2:
Composition of Concerns

=> Global Engineering

Complex Software-Intensive Systems
• deal with multiple concerns
⇒  require global analysis and execution

•  integrate heterogeneous parts
⇒  require global service

• manage evolution of concerns and the emergence of
new concerns
⇒  require evolution and creation of tools and methods for software

development

23

Aerodynamics

Authorities

Avionics

Safety
Regulations

Airlines

Propulsion
System

Mechanical
Structure

Environmental
Impact

Navigation
Communications

Human-
Machine

Interaction

24

25

Aerodynamics

Authorities

Avionics

Safety
Regulations

Airlines

Propulsion
System

Mechanical
Structure

Environmental
Impact

Navigation
Communications

Human-
Machine

Interaction

Heterogeneous

Domain-Specific

Modeling Languages

(AO) MDE
=

(AO) Modeling
+

Composition

Why? various intents
When? design vs. run time

What? homogeneous vs. Heterogeneous
Where? static vs dynamic introduction

How? symmetric vs. Asymmetric

=> different techniques for composition

Challenges

• Model (Driven) Engineering
 è (Software) Language Engineering
 è Global (Software) Engineering

• Language relationships should be capitalized
⇒  from transformation to composition

• Global model coordination and analysis
⇒  from design to runtime

27

On the Globalization
of Modeling Languages!

An Initiative…

Focuses on SLE tools and methods for interoperable,
collaborative, and composable modeling languages

29

… Constantly Growing

30

United States

Canada

The GEMOC Initiative is born!
An open initiative to

•  coordinate (between members)
•  disseminate (on behalf the members)

worldwide R&D efforts on the globalization of modeling languages

http://gemoc.org

•  “Supporting coordinated use of DSMLs leads to what we call the
globalization of modeling languages, that is, the use of multiple
modeling languages to support coordinated development of diverse
aspects of a system.”

•  Advisory Board: Benoit Combemale (Fr.), Robert B. France (USA), Jeff Gray (USA), Jean-Marc
Jézéquel (Fr.)

•  Funded by complementary and successive projects (IP left to PCA of each projects)
31

The GEMOC Initiative: Objectives
Globalized DSMLs aim to support the following critical
aspects of developing complex systems:

•  communication across teams working on different aspects,
•  coordination of work across the teams,
•  and control of the teams to ensure product quality.

Current investigated application domains:

•  Complex software-intensive systems: safety-critical embedded
systems, cyber-physical systems, system of systems, dynamic
adaptable systems

•  Enterprise Architecture

32

The GEMOC Studio

33

GeMoC Studio (from WP4)

Eclipse

Eclipse Modeling

Language Definition Tools
DSML (from WP1), MoCC (from WP2), Graphical Animation (from

WP4), and their Composition (from WP3 and WP4)

Domain Designers
(from WP5)

Domain Experts
(from WP5)

eXecutable Modeling Tools
(reflexive editors, VM and compilers: EMF,

Kermeta, and OBEO Designer)

Reflexive Model
Animators

(OBEO Designer)

Execution Engine for Heterogeneous Models
(from WP4)

• A language workbench for domain experts
•  DSMLs implementation and coordination

• A modeling workbench for domain designers
•  Heterogeneous modeling and simulation

ANR INS GEMOC (2012-2016)
"A Language Workbench for Heterogeneous Modeling and Analysis of

Complex Software-Intensive Systems »

Tools and methods for the definition and coordination of
heterogeneous executable modeling languages over
heterogeneous models of computation

http://gemoc.org/ins

Concurrent execution of "
heterogeneous domain-specific models
• Metamodeling: Effective environments for the design
and implementation of executable domain specific
languages (e.g., Kermeta at Inria)
•  BUT these environments do not allow the integration of

heterogeneous models of computation (concurrence,
communication…)

• Models of computation: Effective environments to deal
with the execution and analysis of models based on
heterogeneous models of computation (e.g., Ptolemy at
UC Berkeley, ModHel’X at Supélec)
•  BUT these environments do not allow adaptation to specific

business/application domains

35

Bridging the gap between"
language theory and concurrency theory

fUML Implementation

36

Bridging the Chasm between Executable Metamodeling and Models of Computation
(Benoit Combemale, Cécile Hardebolle, Christophe Jacquet, Frédéric Boulanger, Benoit
Baudry), In 5th Int’l Conference on Software Language Engineering (SLE), 2012.

Concurrent execution of "
homogeneous domain-specific models
Timed Finite State Machine (TFSM) Implementation

 … but also Logo, Actor model
Companion webpage: http://gemoc.org/sle13

37

Reifying Concurrency for Executable Metamodeling (Benoit Combemale, Julien Deantoni,
Matias V. Larsen, Frédéric Mallet, Olivier Barais, Benoit Baudry, Robert B. France), In 6th
Int’l Conference on Software Language Engineering (SLE), 2013.

Concurrent execution of "
heterogeneous domain-specific models

fUML and TFSM Coordination

38

Railroad Crossing Heterogeneous Model (Matias Vara Larsen, Arda Goknil), In 1st Int’l
Workshop on The Globalization of Modeling Languages (GEMOC workshop), 2013.

The GEMOC Studio: Current Status
• A workbench based on EMF

•  A language workbench for DSML Engineers
•  design and implement executable domain specific modeling languages with

explicit model of computation, and (structural and behavioral) language
interfaces

•  define structural and behavioral relations between DSMLs
•  A modeling workbench System/Software Engineers

•  model the heterogeneous aspects of complex software-intensive systems using
various DSML

•  simulate and animate the coordinated execution of the heterogeneous models

• Current integrated technologies:
•  EMF, incl. Ecore, Ecore tools, and OCL
•  Kermeta, xTend, CCSL, Cometa and ECL
•  xText, Obeo Designer (Sirius)
•  GEMOC Execution Engine, Timesquare, Obeo Animator

39

Roadmap (ANR GEMOC)

• Language workbench
• Explicit DSML interface

• Meta-language for DSMLs coordination

• Methodology for designing DSMLs and their coordination
• Heterogeneous model execution
• Execution trace

• Graphical animator design

• Combining continuous time and discrete time
40

Conclusion and Perspectives

• Agile (Software Development)
vs. (Agile Software) Development

• Model Driven Engineering
⇒  Software Language Engineering
⇒  Globalization of Modeling Languages

• The GEMOC Initiative
41

Contact:
Benoit Combemale
benoit.combemale@irisa.fr

http://combemale.fr

GEMOC Initiative: http://gemoc.org
GEMOC Studio: https://ci.inria.fr/gemoc

