

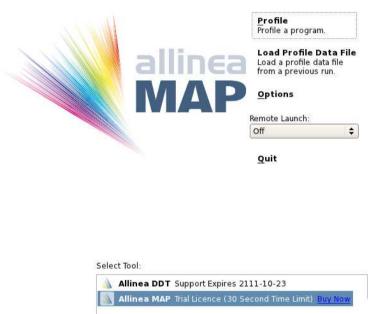
Optimize code for Intel Xeon Phi

Discovering bottlenecks without pain

www.allinea.com

- Introduction
- Allinea MAP and optimizing for Xeon Phi
- Conclusion

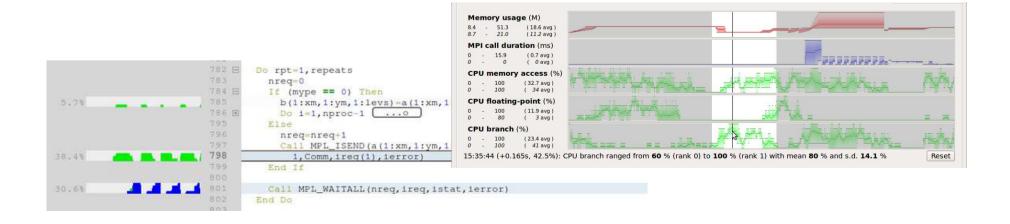
Allinea Unified environment


- A modern integrated environment for HPC developers
- Supporting the lifecycle of application development and improvement
 - Allinea DDT : Productively debug code
 - Allinea MAP : Enhance application performance
- Designed for productivity
 - Consistent easy to use tools
 - Enables effective HPC development
- Improve system usage
 - Fewer failed jobs
 - Higher application performance

www.allinea.com

Allinea MAP Increase application performance

- Parallel profiler designed for:
 - C/C++, Fortran
 - Multiprocess code
 - Interdependent or independent processes
 - Multithreaded code
 - Monitor the main threads for each process
 - Accelerated codes
 - GPUs, Intel Xeon Phi
- Improve productivity :
 - Helps you detect performance issues quickly and easily
 - Tells you immediately where your time is spent in your source code
 - Helps you to optimize your application efficiently


Allinea MAP Find performance issues quickly

- Look at the entire application on real data sets
 - Visualize the entire run at full scale, not just reduced sets
 - Zoom in to explore iterations, functions and loops

• Understand the nature of bottlenecks

- Source code viewer pinpoints bottleneck locations
- CPU, MPI, I/Os and memory metrics identify the cause

Allinea MAP The missing link in HPC tools

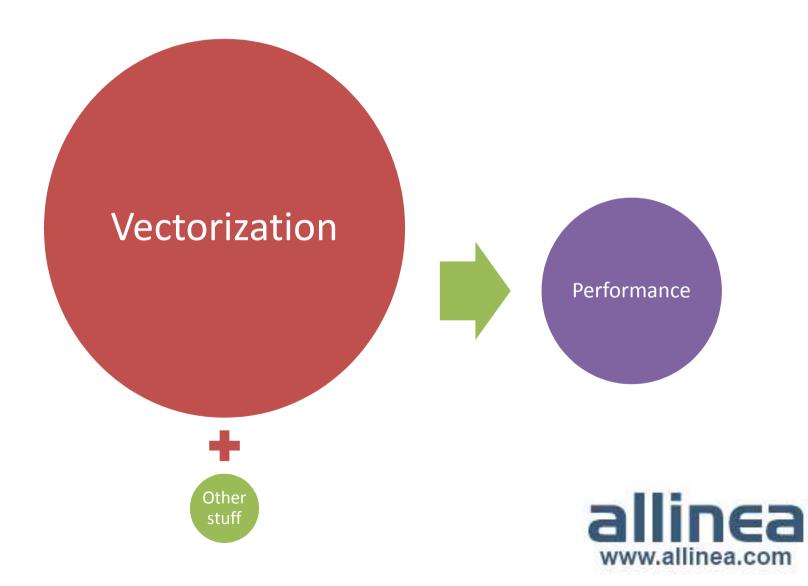
• Unique profiling methodology (even on Intel Xeon Phi)

- No need to instrument your code
- Just 5% wall-clock overhead
- Small output files (10-20Mb is typical)

• Benefit:

- 80% of the profiling activity can now be done by end-users
- Helps to focus on the right bit of the application
- Brings more value to the expertise of application support


Optimizing for the Xeon Phi Where do you start?



- Pretty much everyone

Optimizing for the Xeon Phi But what matters?

Optimizing for the Xeon Phi Is my code well-vectorized?

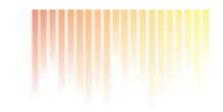
mg.f(2432): (col. 10) remark: loop was not vectorized: not inner loop. mq.f(2431): (col. 7) remark: loop was not vectorized: not inner loop. mg.f(993): (col. 13) remark: LOOP WAS VECTORIZED. mq.f(992): (col. 10) remark: loop was not vectorized: not inner loop. mg.f(991): (col. 7) remark: loop was not vectorized: not inner loop. mg.f(243): (col. 7) remark: loop was not vectorized: existence of vector depende nce. mg.f(993): (col. 13) remark: LOOP WAS VECTORIZED. mq.f(992): (col. 10) remark: loop was not vectorized: not inner loop. mg.f(991): (col. 7) remark: loop was not vectorized: not inner loop. mg.f(753): (col. 13) remark: loop was not vectorized: vectorization possible but seems inefficient. mg.f(762): (col. 13) remark: loop was not vectorized: vectorization possible but seems inefficient. mg.f(749): (col. 10) remark: loop was not vectorized: not inner loop. mq.f(746): (col. 7) remark: loop was not vectorized: not inner loop. mg.f(993): (col. 13) remark: LOOP WAS VECTORIZED. mq.f(992): (col. 10) remark: loop was not vectorized: not inner loop. mq.f(991): (col. 7) remark: loop was not vectorized: not inner loop. mq.f(2255): (col. 16) remark: loop was not vectorized: existence of vector depen dence. mq.f(2254): (col. 13) remark: loop was not vectorized: not inner loop. mq.f(2251): (col. 7) remark: loop was not vectorized: not inner loop. mg.f(2433): (col. 13) remark: LOOP WAS VECTORIZED. mq.f(2433): (col. 13) remark: loop was not vectorized: not inner loop. mq.f(2432): (col. 10) remark: loop was not vectorized: not inner loop. mq.f(2431): (col. 7) remark: loop was not vectorized: not inner loop. mg.f(2433): (col. 13) remark: LOOP WAS VECTORIZED. mg.f(2433): (col. 13) remark: loop was not vectorized: not inner loop. mg.f(2432): (col. 10) remark: loop was not vectorized: not inner loop. mg.f(2431): (col. 7) remark: loop was not vectorized: not inner loop. mg.f(527): (col. 7) remark: loop was not vectorized: nonstan<u>dard loop is not a v</u> ectorization candidate. mg.f(552): (col. 7) remark: loop was not vectorized: nonstandard loop is not a v ectorization candidate. mg.f(1150): (col. 7) remark: loop was not vectorized: loop was transformed to me mset or memcpy. mg.f(1150): (col. 7) remark: l<u>oop was not vectorized: loop was transformed to me</u> mset or memcpy. mg.f(1645): (col. 7) remark: loop was not vectorized: loop was transformed to me mset or memcpy. $ma f(1655) \cdot (col)$ 7) remark: loop was not vectorized: loop was transformed to

... maybe?

Optimizing for the Xeon Phi Is my code well-vectorized?

<u>V</u> iew Se <u>a</u> rch <u>W</u> ind	- Allinea MAP v dow <u>H</u> elp			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
ofiled: slow_f on 8 pro	cesses Started:	Thu Mar 14 14:03:16 201	13 Runtime: 30s Time in MPI: 37 %			Hide Metrics
Memory usage (M)						
	(17.9 avg) (22.2 avg) —					
MPI call duration (
0 - 5,567.9 (642.7 avg)					
	0 avg)					
	SS (%) 2.2 avg) 10 avg)			Longitude West		
CPU floating-point				an an an an air an		
0 - 100 (35.6 avg) 44 avg)	ment and	my many in			
CPU floating point	27.7 avg)		- Martin			
0 - 10 (14:03:31-14:03:36 (ra	0 avg)	5% of total): Mean Memory	y usage 22.2 M; Mean MPI call duration 0.0) ms; Mean CPU memory -	access 10.4 %; Mean CPI	U floating-poi Reset
0 - 10 (.4:03:31-14:03:36 (ra	ange 4.928s, 16. 100 101	! inefficient	y usage 22.2 M; Mean MPI call duration 0.0) ms; Mean CPU memory -	access 10.4 %; Mean CPI	U floating-poi Reset
0 - 10 (14:03:31-14:03:36 (ra slow.f90 🗶	ange 4.928s, 16. 100	! inefficient do l=1,500	y usage 22.2 M; Mean MPI call duration 0.0) ms; Mean CPU memory -	access 10.4 %; Mean CPI	U floating-poi Reset
0 - 10 (100 101 102 103 104	! inefficient do 1=1,500 do i=1,2000 do j=1,2000	y usage 22.2 M; Mean MPI call duration 0.0) ms; Mean CPU memory -	access 10.4 %; Mean CPI	U floating-poi Reset
0 - 10 (L4:03:31-14:03:36 (ra slow.f90 X	100 101 102 103 104 105	! inefficient do l=1,500 do i=1,2000 do j=1,2000 x=1	y usage 22.2 M; Mean MPI call duration 0.0) ms; Mean CPU memory -	access 10.4 %; Mean CPI	U floating-poi Reset
0 - 10 (L4:03:31-14:03:36 (ra slow.f90 X	100 101 102 103 104 105 106	<pre>! inefficient do l=1,500 do i=1,2000 do j=1,2000</pre>) ms; Mean CPU memory -	access 10.4 %; Mean CPI	U floating-poi Reset
0 - 10 (L4:03:31-14:03:36 (ra slow.f90 ★	100 101 102 103 104 105 106 106 107 108	<pre>! inefficient do l=1,500 do i=1,2000 a do j=1,2000 x=i y=j a(i,j)=x* end do</pre>) ms; Mean CPU memory -	access 10.4 %; Mean CPI	U floating-poi Reset
0 - 10 (14:03:31-14:03:36 (ra slow.f90 ★	100 101 102 103 104 105 106 105 106	<pre>! inefficient do l=1,500 do i=1,2000 x=i y=j a(i,j)=x** end do end do</pre>) ms; Mean CPU memory -	access 10.4 %; Mean CPI	U floating-poi Reset
0 - 10 (L4:03:31-14:03:36 (ra slow.f90 ★ .18 .98	100 101 102 103 104 105 106 107 108 109 110	<pre>! inefficient do l=1,500 do i=1,2000 x=i y=j a(i,j)=x* end do end do end do</pre>) ms; Mean CPU memory -	access 10.4 %; Mean CPI	U floating-poi Reset
0 - 10 (L4:03:31-14:03:36 (ra slow.f90 ★ -18 -98	100 101 102 103 104 105 106 107 108 109 110	<pre>! inefficient do l=1,500 do i=1,2000 x=i y=j a(i,j)=x** end do end do</pre>	j) ms; Mean CPU memory -	access 10.4 %; Mean CPI	
0 - 10 (L4:03:31-14:03:36 (ra slow.f90 ★ .18 .98	100 101 102 103 104 105 106 107 108 109 110	<pre>! inefficient do l=1,500 do i=1,2000 x=i y=j a(i,j)=x* end do end do end do</pre>	j) ms; Mean CPU memory -	access 10.4 %; Mean CPI	
0 - 10 (L4:03:31-14:03:36 (ra slow.f90 X .18 .08	ange 4.928s, 16. 100 101 102 103 105 106 107 108 109 110 Files Parallel	<pre>! inefficient do 1=1,500 do i=1,2000 x=i y=j a (i, j) = x** end do end do end do Stack View</pre>	j) ms; Mean CPU memory -		
0 - 10 (L4:03:31-14:03:36 (ra slow.f90 ★ .18 .98	ange 4.928s, 16. 100 101 102 103 104 105 106 107 108 109 110 Files Parallel S MPI	<pre>! inefficient do l=1,500 do i=1,2000 x=i y=j a(i,j)=x** end do end do end do Stack View Function(s) on line</pre>	1 Source program slow call stride) ms; Mean CPU memory -	Positi slow.f slow.f	on 90:1 90:11
0 - 10 (L4:03:31-14:03:36 (ra slow.f90 X .18 .08	ange 4.928s, 16. 100 101 102 103 104 105 106 107 108 109 110 Efiles Parallel S MPI	<pre>! inefficient do 1=1,500 do i=1,2000 x=i y=j a (i, j) = x** end do end do end do Stack View</pre>	j Source program slow) ms; Mean CPU memory -	Positi slow.f slow.f slow.f	0n 90:1

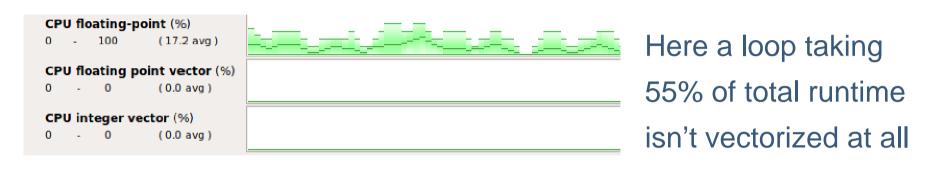
Optimizing for the Xeon Phi Is my code well-vectorized?

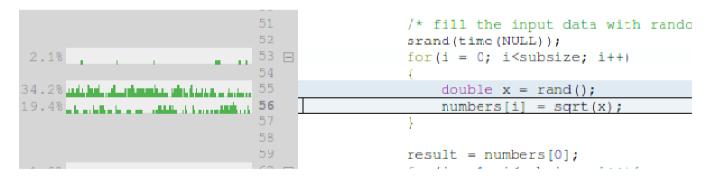


0 -	50	(10 avg)	
CPU flo	ating-po	int (%)	And the state of the second state of the secon
	100 100	(35.5 avg) (44 avg)	
CPU flo	ating po	int vector (%)	
0 -	100 10	(27.7 avg) (0 avg)	A many and the second s
14:03:31-			16.5% of total): Mean Memory usage 22.2 M; Mean MPI call duration 0.0 ms; Mean CPU memory acce

Not in this loop (16.5% of total time)

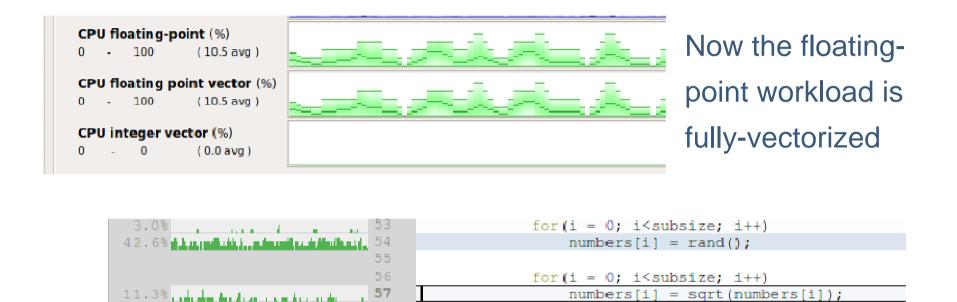
1	02	do 1=1,500
<0.1%	03	do i=1,2000
10.9%	04	do j=1,2000
1	.05	x=i
1	06	y=j
89.08	.07	a(i,j)=x*j
1	80.	end do
1	09	end do
1	10	end do
	4.4	


Optimizing for the Xeon Phi Non-obvious tradeoffs



😣 🗆 🗊 sqrtmax-fusion.map - Alline	a MAP v4-1-BRANCH		
<u>File View Search W</u> indow <u>H</u> elp			
Profiled: sqrtmax-fusion on 4 processes S	itarted: Mon Mar 11 13:20:	53 2013 Runtime: 2s Time in MPI: 40 %	Hide Metrics
Memory usage (M)			
MPI call duration (ms) 0 - 2.3 (0.4 avg)			
CPU floating-point (%) 0 - 100 (17.2 avg)	الأليني	محمقهم بالمأصلان بالمباد بالمقا	
CPU floating point vector (%) 0 - 0 (0.0 avg)			
CPU integer vector (%) 0 - 0 (0.0 avg)			
13:20:53-13:20:54 (range 1.671s): Mea	n Memory usage 7.2 M; Me	an MPI call duration 0.4 ms; Mean CPU floating-point 17.2 %; Mean CPU floating point vector	0.0 %; Mean CPU inte Reset
🛛 sqrtmax-fusion.c 🗶			
50 51 52 2.1%	srand(ti	the input data with random numbers ourselves */ me(NULL)); 0; i <subsize; i++)<="" th=""><th></th></subsize;>	
34.2%		<pre>le x = rand();</pre>	
19.4% 56	numb	ers[i] = sqrt(x);	
58 59 1.0%	for(i =	numbers[0]; 1; i <subsize; i++){<="" th=""><th></th></subsize;>	
Input/Output Project Files Parallel St	tack View		
Parallel Stack View			ē X
Total Time 🔺 MPI	Function(s) on line	Source	Position
34.2% odd. bill of a standak of a farmer in a standak of a standard stand	main frand, rand@plt> mPl_Recv MPl_Recv	<pre>int main(int argc, char *argv[]) { double x = rand(); MPI_Recv(&result, 1, MPI_DOUBLE, i, 0, MPI_COMM_WORLD, &status); numbers[i] = sqrt(x); </pre>	sqrtmax-fusion.c:9 sqrtmax-fusion.c:55 sqrtmax-fusion.c:36 sqrtmax-fusion.c:56
8.8%	MPI_Recv MPI_Recv MPI_Recv MPI_Send	<pre>MPI_Recv(&subsize, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD, &status); MPI_Recv(numbers, subsize, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD, &status); MPI_Send((numbers+sIndex+(subsize*(i-1))), subsize, MPI_DOUBLE, i, 0, MPI_COMM. if(result < numbers[i])</pre>	sqrtmax-fusion.c:48 sqrtmax-fusion.c:49
/ X %A	>		H 34a9cd1d0317 Jun 10 2013

Optimizing for the Xeon Phi Non-obvious tradeoffs



Taking the unvectorizable rand() out of the loop allows the sqrt workload to be fully-vectorized – reverse loop fusion!

Optimizing for the Xeon Phi Non-obvious tradeoffs

But all the time is being spent in the random number generation, so that's what really needs to be optimized

L 59 E

1.7%

result = numbers[0];

for (i = 1; i<subsize; i++) {

Optimizing for the Xeon Phi Know your tools

Random Number Function Vectorization

Submitted by Ronald W Green ... on Fri, 09/07/2012 - 16:31

Categories: Intel® Many Integrated Core Architecture , Vectorization , Intel® C++ Compiler , Intel® Fortran Compiler , C/C++ , Fortran , Developers , Linux* , Advanced

Tags: Random Number Function Vectorization

Drand48 Vectorization in C/C++ Goodman, Steve9700.000000000 Compiler Methodology for Intel® MIC Architecture

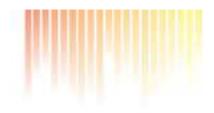
Vectorization Essentials, Random Number Function Vectorization

The Intel 13.0 Product Compiler now supports random number auto- vectorization of the drand48 family of random number functions in C/C++ and RANF and Random_Number functions in Fortran. Vectorization is supported through the Intel Short Vector Math Library (SVML).

Supported C/C++ Functions:

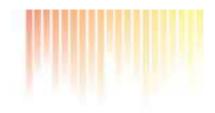
double drand48(void); double erand48(unsigned short xsubi[3]); long int lrand48(void); long int prand48(unsigned short xsubi[3]);

Replace rand() with Intel's vectorized version and re-fuse the loop to retain temporal cache locality benefits


Optimizing for the Xeon Phi The full picture

••••	oc/training/map-introdu	uction/2-cpu-optimization/solution/sqrtmax-ffastmath.map - Allinea MAP v4-i-BR/	ANCH
<u>File View Search Window H</u> elp			
Profiled: sqrtmax-vector on 4 processes	Started: Mon Mar 11 12:17	':19 2013 Runtime: 2s Time in MPI: 38%	Hide Metrics
Memory usage (M) 5.4 - 7.7 (7.2 avg)			
MPI call duration (ms) 0 - 3.1 (0.5 avg)			
CPU floating-point (%) 0 - 100 (10.5 nvg)	فجريجو	kala laka lak	
CPU floating point vector (%) 0 - 100 (10.5 avg)		k ala likki li k	
CPU integer vector (%) 0 - 0 (0.0 avg)			
12:17:19-12:17:20 (range 1.987s): Nea	an Memory usage 7.2 M; Me	ean MPI call duration 0.5 ms; Mean CPU floating-point 10.5 %; Mean CPU floating point vector 10	.5 %; Mean CPU int Reset
© sqrtmax-workergen.c 🗙			
52 53.0% 12.6%	for(i - numb	<pre>ime(NULL);; 0; i<subsize; i++)<br="">sers[i] = rand();</subsize;></pre>	
56 11.3%		0; l≺subsize; i++) pers[i] - sgrt(numbers[i]);	
58	result =	= numbers[0];	
1.7% 59 E	for (1 =	1; INSUBSIZE; Itt)(result < numbers[i])	
	tack View		
Input/Output Project Files Parallel S arallel Stack View			
italier stack view	Function(s) on line	Course	Position
star nine · Min	i main	Source int main(int args, char *argw[]);	sqrtmax-workergen.c:9
42.6%))	∉ rand, rand@plt>	<pre>numbers[1] = rand(); MP1_Recv(&result, 1, MP1_DJUBLE, 1, 0, MP1_COMM_WORLD, &status);</pre>	sqrtmax-workergen.c:54 sqrtmax-workergen.c:36
11.3%,	E MPI_Recv F MPI_Recv	<pre>numbers'ill = sqtf(numbers(il): MPI_Recv(subsize, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD, &status); MPI_Recv(numbers, subsize, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD, &status); for(i = 0, i<cubsize, iii)<="" pre=""></cubsize,></pre>	sqrtmax-workergen.c:57 sqrtmax-workergen.c:48 sqrtmax-workergen.c:49 sqrtmax workergen.c:53
2.6%	MPI_Send 2 others	<pre>if(result < numbers[1]) Pl_gend(numberstallndex+(subsize*(i-1))), subsize, MPI_DOUBLE, i, 0, MPI_COMM_W_ for(i = 1; i<subsize; i++){<="" pre=""></subsize;></pre>	sqrtmax-workergen.c:60 sqrtmax-workergen.c:33 sqrtmax-workergen.c:59
		Allinea MAP y4-1-DRANCH 3	4a9cd1d0317 Jun 10 201

You need to see the full picture to spot these tradeoffs – Allinea MAP shows you the way


Optimizing for the Xeon Phi Running on the card

Profiled: wave-c on 4 p	processes Started: F	Fri Apr 5 17:34:54 2013	untime: 35s Time in MPI: 4%	Hide Metrics
Memory usage (N				
10.6 - 23.3	(14.7 avg)			
MPI call duration	(ms) (0.3 avg)			Wileddille i Hiterdi Mantatara a consta Istoratakik
	(0.5 0.9)			
CPU floating-poir 0 - 50	nt (%) (10.2 avg)		عبرو بالمنافع بالمنافع بالمنافع بالمنافع بالمنافع المنافع المنافع المنافع والمنافع المنافع الم	المالي المسلم الم المالي المسلم الم الم
17:34:54-17:35:29 (range 34.641s): Mea	an Memory usage 14.7 M;	ean MPI call duration 0.3 ms; Mean CPU floating-point 10.2 %;	Reset
🕫 wave.c 🕱				
	195			
			e points along line */	
3.53		for (j	1; j <= npoints; j++)	
	199	1 /*	lobal endpoints */	
4.83	200	if	(first + j - 1 == 1) (first + j - 1 == tpoints))	
1.91	201	. 1	newval[j] = 0.0;	
66.81 010-000 000000000	202 000-000-000 203	els	io math(j);	
NEXTRACTOR .	204	1		
3.98	205 日	for (j	1; j <= npoints; j++)	
11.45	206		al[j] = values[j];	
3,11			s[j] = newval[j];	
		1		-
	212	allt = (end.tv	ec - start.tv sec) * 1000000 + (end.tv nsec - start.tv nsec) / 1000;	
	213	double calculat	on_rate = ((double)tpoints / (double)allt) * iterations; // in million points per second	
	214		rintf("points / second: %.1fM (%.1fM per process)\n", calculation_rate, calculation_rate / ntask)	F
			<pre>y = (double)(allt - communication usec) / (double)allt; mpute / communicate efficiency: %d%% %d%% %d%% n", (int)(100 * efficiency + 0.5));</pre>	
	217	}	space / communicate efficiency, succes / success, fine, fine, first efficiency + 0.577,	
	218	2. 		
	219 🖽	/*	*/_)	
Input/Output Project	ct Files Parallel Sta	ack View	440000000	C
Parallel Stack View	CU Files Farallel Sta			8
Total Time	A MPI	Function(s) on line	Source	Position
		🖻 main	t.	wave.c:282
C.C. Operative militariant at annual	and the second second second	🗏 update	update(left, right);	wave.c:308
66.8% http://doi.org/10.000	Sector Reading		<pre>do_math(j); oldval(j) = values(j);</pre>	wave.c:203 wave.c:207
4.8%		1 - 1	if ((first + j - 1 == 1) (first + j - 1 == tpoints))	wave.c:200
3.9%			<pre>for (j = 1; j <= npoints; j++)</pre>	wave.c:205
3.5%	and the second state and the		<pre>for (j = 1; j <= npoints; j++)</pre>	wave.c:197
3.1%		E MOL DA	values[j] = newval[j];	wave.c:208
2.7%	**** databased 2.7%	MPI_Recv	<pre>MPI_Recv(&values[0], 1, MPI_DOUBLE, left, E_LtoR, MPI_COMM_WORLD, newval[j] = 0.0;</pre>	wave.c:175 wave.c:201
1.9%	1.4%	H MPI Recv	MPI_Recv(&values[npoints+1], 1, MPI_DOUBLE, right, E_RtoL,	wave.c:201 wave.c:181
	the second se		1999년 7월 20일 - 1999년 1999년 1999년 1999년 1991년 1	

Allinea MAP runs with full metrics on Xeon Phi cards!

Optimizing for the Xeon Phi Running on the card

Profiled: wave-c on 4 proc	cesses Started:	Fri Apr 5 17:34:54 2013	untime: 35s Time in MPI: 4%	Hide Metrics
	-			
Memory usage (M) 10.6 - 23.3 (1	14.7 avg)			
				entered in terms of first sector of the sector of the
MPI call duration (m 0 - 12.8 (0	15) 0.3 avg)			
CPU floating-point ((96)	-		
).2 avg)	unden auf	التلق بقر ومقدمينين والجريفية والترو ويتفر والتكفيك والتقار الشاري ويتبال	When a she is a she was to
17:34:54-17:35:29 (ran	nge 34.641s): Me	an Memory usage 14.7 M;	lean MPI call duration 0.3 ms; Mean CPU floating-point 10.2 %;	Reset
© wave.c 🗶	1.95			F
	195	/* upda	e points along line */	
3.5%		for (j	1; j <= npoints; j++)	
	198 199	1 /*	lobal endpoints */	
4.83	200		(first + j - 1 == 1) (first + j - 1 == tpoints))	
1.91	201		newval[j] = 0.0;	
66.81 0-0		el:	do math(j);	
	204	1		
3.91		tor (j	1; j <= npoints; j++)	
11.45	207	olo	al[j] = values[j];	
3,11	208	val	es[j] = newval[j];	
	209 210	1		
	211	1		
		allt = (end.tv	ec - start.tv_sec) * 1000000 + (end.tv_nsec - start.tv_nsec) / 1000;	
	213 214		on rate = ((double)tpoints / (double)allt) * iterations; // in million points per second rintf("points / second: %.1fM (%.1fM per process)\n", calculation rate, calculation rate /	ntask):
		double efficier	y = (double) (allt - communication usec) / (double) allt;	in case of y
	216	reduce_print("o	<pre>mpute / communicate efficiency: %d%% %d%% %d%% \n", (int)(100 * efficiency + 0.5));</pre>	
	217 218	1		
	219 Œ	} /*	······	
nput/Output Project Fi	iles Parallel St	ack View	E. 201	t
arallel Stack View	nes raraier se			0
otal Time	▲ MPI	Function(s) on line	Source	Position
inne	MIL	E main	Source	wave.c:282
		Eupdate	update(left, right);	wave.c.202 wave.c:308
66.8% Linddon of Accord			do_math(j);	wave.c:203
11.4%	ar - 10 halfs - 10 ar an abor - 1		oldva[[]] = values[]];	wave.c:207
4.8%			<pre>if ((first + j - 1 == 1) (first + j - 1 == tpoints)) for (j = 1; j <= npoints; j++)</pre>	wave.c:200 wave.c:205
3.5%	*** ***		for (j = 1; j <= npoints; j++)	wave.c:205 wave.c:197
3.1%			values[j] = newval[j];	wave.c:208
2.7%		MPI_Recv	MPI_Recv(&values[0], 1, MPI_DOUBLE, left, E_LtoR, MPI_COMM_WORLD,	wave.c:175
1.9%		1	newval[j] = 0.0;	wave.c:201

This makes it easy to compare and learn versus the host

1.4%

1.4%

MPI Recv

MPI_Recv(&values[npoints+1], 1, MPI_DOUBLE, right, E_RtoL,

wave.c:181

- Allinea tools are the premier Xeon Phi development environment
 - See at a glance which loops to vectorize
 - Full profiling metrics available on the Xeon Phi cards
 - Unified interface with Allinea DDT keeps you productive, whatever you're working on

TO LEARN MORE ABOUT ALLINEA PRODUCTS

Attend Allinea technical tutorial & presentation !

Technical tutorial :Room PA2 "Gregory"Presentation :Amphi "Becquerel"

Friday 11h00-12h30 Friday 13h15-13h45

Thank you

Your contacts :

- Technical Support team :
- Sales team :

support@allinea.com sales@allinea.com

www.allinea.com