
Que calcule vraiment un ordinateur?

Florent de Dinechin
(ex-) projet AriC

Introduction

Facts and figures

Some common misconceptions about floating point

The floating-point software/hardware stack

Conclusion

Introduction

Introduction

Facts and figures

Some common misconceptions about floating point

The floating-point software/hardware stack

Conclusion

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 2

This talk is mostly about floating-point

Do you know there is a standard for floating-point?
It is called IEEE-754, and it is quite nice. For instance,

Correct rounding to the nearest

The basic operations (noted ⊕, 	, ⊗, �), and the square root should
return the FP number closest to the exact mathematical result.

If you think of it, this is the best that the format allows

Nice properties :

Rounding is monotonic

...

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 3

However and nevertheless,

Let us compile the following C program on my Debian
standard-respecting computer:

1 float ref , index;
2

3 ref = 169.0 / 170.0;
4

5 for (i = 0; i < 250; i++) {
6 index = i;
7 if (ref == (index / (index + 1.0))) break;
8 }
9

10 printf ("i=%d\n",i);

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 4

First conclusion

Equality test between FP variables is dangerous.
Or,

If you can replace a==b with (a-b)<epsilon in your code, do it!

A physical point of view

Given two coordinates (x , y) on a snooker table,
the probability that the ball stops at position (x , y) is always zero.

Still, on this expensive laptop, FP computing is not straightforward,
even within such a small program.

Go fetch me the person in charge

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 5

Who is in charge of floating-point?

The processor

has internal FP registers,
performs basic FP operations,
raises exceptions,
writes results to memory.

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 6

Who is in charge of floating-point?

The processor

The operating system

handles exceptions
computes functions/operations not handled directly in hardware

I most elementary functions (sine/cosine, exp, log, ...),
I divisions and square roots on recent processors
I some situations with subnormal numbers

handles floating-point status: precision, rounding mode, ...
I older processors: global status register
I more recent FPUs: rounding mode may be encoded in the

instruction

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 7

Who is in charge of floating-point?

The processor

The operating system

The programming language

should have a well-defined semantic,
... (detailed in some arcane 1000-pages document)

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 8

Who is in charge of floating-point?

The processor

The operating system

The programming language

The compiler

has hundreds of options
some of which to preserve the well-defined semantic of the language
but probably not by default:
Marketing says: default should be optimize for speed!

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 9

Who is in charge of floating-point?

The processor

The operating system

The programming language

The compiler

The programmer

... is in charge in the end.

Of course, eventually, the programmer will get the blame.

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 10

Enough toy examples, give us real horror stories

Told to me by a CERN programmer:

Use the (robust and tested) standard sort function of the STL
C++ library

to sort objects by their radius: according to x*x+y*y.

Sometimes (rarely) segfault, infinite loop...

After long and painful debugging

The sort algorithm works under the following naive assumption:
if A ≮ B, then, later, A ≥ B

x*x+y*y inlined and compiled differently at two points of the
program,

sometimes (depending on register allocation) comparison returns
=, sometimes returns <

enough to break the assumption (horribly rarely).

This talk is about avoiding such problems.
Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 11

Facts and figures

Introduction

Facts and figures

Some common misconceptions about floating point

The floating-point software/hardware stack

Conclusion

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 12

IEEE 754 in one slide

This standard, defined in 1985, revised in 2008
(new stuff in italic below),

specifies

floating-point formats:

on 16-bits, 32-bits, 64-bits, 128-bits
in binary (1.01101001011010101101011 · 213)
and decimal (3.543672 · 10−2)
exceptional cases:
±0, ±∞, NaN (Not a Number), subnormals

floating-point rounding modes

to the nearest, up, down, towards zero

operations

+, −, ×, ÷,
√

, fused multiply-and-add
format conversions
recommended elementary functions
recommended sums, sums of products, sums of square

control on the reproducibility/performance trade-off

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 13

Arithmetic hardware in the typical processor

desktop processor embedded processor
(Pentium etc) (ARM)

integer 64 bits, 32 bits, 16 bits, 8 bits 32 bits
+, −, ×, / +, −, ×

floating-point 64 bits, 32 bits 32 bits
+, −, ×, /,

√
+, −, ×

Floating point formats

64 bits means 53-bit mantissa (“double precision”)

32 bits means 24-bit mantissa (“single precision”)

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 14

A parenthesis on good language design

Consider the names chosen for the numeric types in C:

char (the 8-bit integer) is an abbreviated noun (character) from
typography

unsigned char ???

you can add two charAB
int is an abbreviated noun (integer) from mathematics

although 2147483647 +1 = -2147483648

short and long are adjectives

float is a verb, at least it is a computer term

double means double what?

long double is not even syntactically correct in english
(and, in case you ask, not the same number of bits as a long int)

After so much nonsense, if you’re lost, it is not your fault

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 15

Single precision spoils us

Single precision provides 7 decimal digits of accuracy

Does Angry Bird really need to compute to an accuracy of 10−7

the trajectory input using your fat fingers?

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 16

Double precision spoils us

Double-precision provides 15 digits of accuracy

Count the digits in the following

Definition of the second: the duration of 9,192,631,770 periods of
the radiation corresponding to the transition between the two
hyperfine levels of the ground state of the cesium 133 atom.

Definition of the metre: the distance travelled by light in vacuum
in 1/299,792,458 of a second.

Most accurate measurement ever (another atomic frequency)
to 14 decimal places

Most accurate measurement of the Planck constant to date:
to 7 decimal places

The gravitation constant G is known to 3 decimal places only
and Voyager made it to Neptune nevertheless

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 17

Parenthesis: integer precision spoils us, too

In float, 109 + 1.0 = 109 (recall definition of IEEE-754 rounding).

Money is and will always be fixed-point

Even when you are very very very rich,
when you pay a small croissant with your credit card,
your bank will make sure this euro is not lost to rounding...

Count the digits in the following

The richest man in the world owns 7,500,000,000,000 cents

A 64-bit integer holds 18,446,744,073,709,551,615 cents

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 18

Why then binary64 (double precision)?

A ploy by IBM/Intel/AMD to sell us expensive over-powered chips?

This PC computes 109 operations per second (1 GFlops)

An allegory due to Kulisch

print the numbers in 100 lines of 5 columns double-sided:
1000 numbers/sheet

1000 sheets ≈ a heap of 10 cm

109 flops ≈ heap height speed of 100m/s, or 360km/h

A teraflops (1012 op/s) prints to the moon in one second

Current top 500 computers reach the petaflop (1015 op/s)

each operation may involve a relative error of 10−16,
and they accumulate.

Doesn’t this sound wrong?

We would use these 16 digits just to accumulate garbage in them?

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 19

But don’t worry

You don’t need a petaflops computer to compute completely wrong.

Example: floating-point addition is not associative

(109 + 1.0)− 109 versus ((109 − 109) + 1.0)

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 20

Some common misconceptions
about floating point

Introduction

Facts and figures

Some common misconceptions about floating point

The floating-point software/hardware stack

Conclusion

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 21

Many reasons to be afraid

From Kahan’s lecture notes (on the web):

1. What you see is often not what you have.

2. What you have is sometimes not what you wanted.

3. If what you have hurt you, you will probably never know how or
why.

4. Things go wrong too rarely to be properly appreciated, but not
rarely enough to be ignored.

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 22

Common misconception 0

Floating-point numbers are real numbers

⊕ Of course they are, since they are rationals (±M · 2e).

	 However, many properties on the reals are no longer true on the
floating-point numbers

A perfectly sensible floating-point program (Malcolm-Gentleman)

A := 1.0;

B := 1.0;

while ((A+1.0)-A)-1.0 = 0.0

A := 2 * A;

while ((A+B)-A)-B <> 0.0

B := B + 1.0;

return(B)

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 23

Common misconception 0.5

All rational numbers can be represented as floating-point numbers
1/3 cannot. Worst, 0.1 or 0.01 cannot either.

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 24

A killer bug

In 1991, a Patriot missile failed to intercept a Scud missile, and 28
people were killed.

The code worked with time increments of 0.1 s.

But 0.1 is not representable in binary.

In the 24-bit format used, the number stored was
0.099999904632568359375

The error was 0.0000000953.

After 100 hours = 360,000 seconds, time is wrong by 0.34s.

In 0.34s, a Scud moves 500m

Of course in this case the main bug, still unfixed, is the human nature’s
propension to war.

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 25

Reboot your computer every day:
If you don’t know why, he does

“It makes me nervous to fly on airplanes since I know they are designed
using floating-point arithmetic.”

Alston Householder

(... well, now they are piloted using floating-point arithmetic...)

Patriot-like problems have been discovered in civilian air traffic control
systems, after near-miss incidents.

We should all be nervous that elementary knowledge of floating-point
arithmetic is not taught to all programmers.

Test: which of the following increments should you use?

10 5 3 1 0.5 0.25 0.2 0.125 0.1

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 26

Common misconception 1

Floating-point arithmetic is fuzzily defined, programs involving
floating-point should ne be expected to be deterministic.

⊕ Since 1985, there has been an IEEE standard for floating-point
arithmetic.

⊕ Everybody agrees it is a good thing and will do his best to comply

	 ... but full compliance requires more cooperation between
processor, OS, languages, and compilers than the world is able to
provide.

	 Besides full compliance has a cost in terms of performance.

Floating-point programs may be deterministic and portable... but not
without work.

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 27

Common misconception 2

A floating-point number somehow represents an interval of values
around the “real value”.

⊕ An FP number only represents itself (a rational), and that is
difficult enough

	 If there is an epsilon or an incertainty somewhere in your data, it is
your job (as a programmer) to model and handle it.

⊕ This is much easier if an FP number only represents itself.

The computer has no clue about the “real value”

There is no way to express it in C or Fortran or Python!

I suspect, too often, the programmer has no clue either

... probably the first issue to address.

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 28

Common misconception 3

All floating-point operations involve a (somehow random) rounding
error.

⊕ Many are exact, we know who they are, and we may even force
them into our programs

⊕ Since the IEEE-754 standard, rounding is well defined, and you can
do maths about it

Correct rounding

Operations return a result as if it had been computed to infinite
precision, then rounded to the nearest available floating-point number.

Rounding is not random: it is the best the format allows.

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 29

Examples of exact operations

Decimal, 4 digits of mantissa

4.200 · 101 × 1.000 · 101 = 4.200 · 102

4.200 · 101 × 1.700 · 106 = 7.140 · 107

1.234 + 5.678 = 6.912

1.234− 1.233 = 0.001 = 1.000 · 10−3

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 30

My first cancellation

1.234− 1.233 = 0.001 = 1.000 · 10−3

On one hand, this operation is exact

if I consider that a floating-point number represents only itself

On the other hand, the 0s in the mantissa of the result are
probably meaningless

if I consider that, in the “real world”, my two input numbers would
have had digits beyond these 4.

So, is this situation good or bad ?
It really depends if the following code depends on these meaningless
zeroes...

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 31

Example of property based on correct rounding

Theorem (Fast2Sum algorithm)

Let a and b be floating-point numbers such that |a| ≥ |b|, and consider
the following algorithm, where ⊕ and 	 are IEEE-754 floating-point
operations:

s ← a⊕ b
e ← b 	 (s 	 a)

This algorithm computes two floating-point numbers s and e that
satisfy the following:

s + e = a + b exactly;

s is the floating-point number that is closest to a + b.

In other words:

The rounding error in a floating-point addition is always a
floating-point number itself

It can be computed easily

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 32

Misconception 4:
16 digits should be enough for anybody

See slide “double precision spoils us”

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 33

Variants of misconceptions 4

If I need 3 significant digits in the end,
I shouldn’t worry about accuracy.

We’ve seen two ways to destroy 15 digits in two operations

It will hurt you if you do not expect it
It is easy to avoid being hurt if you expect it

In large computations, errors add up

Yet another variant: PI=3.1416 at the beginning of you program

	 to compute sine correctly, I need to store 1440 bits (420 decimal
digits) of 1/π...

	 Consider sin(2πFt) as time passes (Patriot bug again)...

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 34

Common misconception 5

Estimated diameter of the Universe

Planck length
≈ 1062 ;

A double-precision FP number holds numbers up to 10308;
No need to worry about over/underflow

	 Over/underflows do happen in real code:

geometry (very flat triangles, etc)
statistics/probabilities
intermediate values, approximation formulae
...

	 it will happen to you if you do not expect it

⊕ It is relatively easy to avoid if you expect it

Example: behaviour of

√
x

1 + x2

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 35

Common misconceptions 6

My good program gives wrong results, it’s because of approximate
floating-point arithmetic.

Mars Climate Orbiter crash

Bad time discretization in a naive two-body simulation

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 36

The floating-point
software/hardware stack

Introduction

Facts and figures

Some common misconceptions about floating point

The floating-point software/hardware stack

Conclusion

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 37

If I’m late I should skip directly to slide 45

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 38

The common denominator of modern processors

Hardware support for

addition/subtraction and multiplication
in single-precision (binary32) and double-precision (binary64)
SIMD versions: two binary32 operations for one binary64
various conversions and memory accesses

Typical performance (for one SIMD way):

3-7 cycles for addition and multiplication, pipelined (1 op/cycle)
15-50 cycles for division and square root,

hard or soft, not pipelined (1 op / n cycles).
50-500 cycles for elementary functions (soft)

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 39

Keep clear from the legacy IA32/x87 FPU

It is slower than the (more recent) SSE2 FPU

It is more accurate (“double-extended” 80 bit format), but at the
cost of entailing horrible bugs in well-written programs

the bane of floating-point between 1985 and 2005

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 40

The SSE2 unit of current IA32 processors

Available for all recent x86 processors (AMD and Intel):

An additional set of 128-bit registers

An additional FP unit able of

2 identical binary64 FP operations in parallel, or
4 identical binary32 FP operations in parallel.

clean and standard implementation

subnormals trapped to software, or flushed to zero
depending on a compiler switch (gcc has the safe default)

And soon AVX: multiply all these numbers by 2
(256-bit registers, etc)

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 41

Quickly, the Power family

Power and PowerPC processors, also in IBM mainframes and
supercomputers

No floating-point adders or multipliers

Instead, one or two FMA: Fused Multiply-and-Add

Compute ◦(a× b + c):

faster: roughly in the time of a FP multiplication
more accurate: only one rounding instead of two
enable efficient implementation of division and square root

Standardized in IEEE-754-2008

but not yet in your favorite language

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 42

FMA: the good

Compute ◦(a× b + c):

faster: roughly in the time of a FP multiplication
more accurate: only one rounding instead of two
enable efficient implementation of division and square root

All the modern FPUs are built around the FMA:
ARM, Power, IA64, all GPGPUs, and even latest Intel and AMD
processors.

enables classical operations, too...

Addition: ◦(a× 1 + c)
Multiplication: ◦(a× b + 0)

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 43

FMA: ...the bad and the ugly

◦(a× b + c)

Using it breaks some expected mathematical propertie

Loss of symmetry in
√

a2 + b2

Worse: a2 − b2, when a = b :
◦(◦(a× a)− a× a)

Worse: if b2 ≥ 4ac then (...)
√

b2 − 4ac

Do you see the sort bug lurking?

By default, gcc disables the use of FMA altogether
(except as + and ×)

(compiler switches to turn it on)

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 44

Evaluation of an expression

Consider the following program, whatever the language

double x; float a,b,c,d;

x = a+b+c+d;

Two questions:

In which order will the three addition be executed?

What precision will be used for the intermediate results?

Fortran, C, Java and Python have completely different answers.

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 45

Evaluation of an expression

double x; float a,b,c,d;

x = a+b+c+d;

In which order will the three addition be executed?

With two FPUs (dual FMA, or SSE2, ...),
(a + b) + (c + d) faster than ((a + b) + c) + d
If a, c , d are constants, (a + c + d) + b faster.
(here we should remind that FP addition is not associative
Consider 2100 + 1− 2100)
Is the order fixed by the language, or is the compiler free to choose?
Should additions and multiplications be merged in FMA, and how?

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 46

Evaluation of an expression

double x; float a,b,c,d;

x = a+b+c+d;

In which order will the three addition be executed?

What precision will be used for the intermediate results?
Bottom up precision: (here all float)

I elegant (context-independent)
I portable
I sometimes dangerous: compare C=(F-32)*(5/9) and

C=(F-32)*5/9

Use the maximum precision available which is no slower
I in C, variable types refer to memory locations
I more accurate result

Is the precision fixed by the language, or is the compiler free to
choose?

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 47

Fortran’s philosophy (1)

Citations are from the Fortran 2000 language standard: International
Standard ISO/IEC1539-1:2004. Programming languages – Fortran –
Part 1: Base language

The FORmula TRANslator translates mathematical formula into
computations.

Any difference between the values of the expressions (1./3.)*3. and
1. is a computational difference, not a mathematical difference. The
difference between the values of the expressions 5/2 and 5./2. is a
mathematical difference, not a computational difference.

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 48

Fortran’s philosophy (2)

Fortran respects mathematics, and only mathematics.

(...) the processor may evaluate any mathematically equivalent
expression, provided that the integrity of parentheses is not violated.
Two expressions of a numeric type are mathematically equivalent if, for
all possible values of their primaries, their mathematical values are
equal. However, mathematically equivalent expressions of numeric type
may produce different computational results.

Remark: This philosophy applies to both order and precision.

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 49

Fortran in details

X,Y,Z of any numerical type, A,B,C of type real or complex, I, J of integer
type.

Expression Allowable alternative form
X+Y Y+X
X*Y Y*X
-X + Y Y-X
X+Y+Z X + (Y + Z)
X-Y+Z X - (Y - Z)
X*A/Z X * (A / Z)
X*Y-X*Z X * (Y - Z)
A/B/C A / (B * C)
A / 5.0 0.2 * A

Consider the last line :

A/5.0 is actually more accurate 0.2*A. Do you see why?

This line is valid if you replace 5.0 by 4.0, and then accuracy is the same

... but not if you replace 5.0 by 3.0, do you see why? Does it make sense?

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 50

Fortran in details (2)

Fortunately, Fortran respects your parentheses.

In addition to the parentheses required to establish the desired
interpretation, parentheses may be included to restrict the alternative
forms that may be used by the processor in the actual evaluation of the
expression. This is useful for controlling the magnitude and accuracy of
intermediate values developed during the evaluation of an expression.

(this was the solution to the last FP bug of LHC@Home at CERN)

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 51

Fortran in details (3)

X,Y,Z of any numerical type, A,B,C of type real or complex, I, J of
integer type.

Expression Forbidden alternative form

I/2 0.5 * I
X*I/J X * (I / J)
I/J/A I / (J * A)
(X + Y) + Z X + (Y + Z)
(X * Y) - (X * Z) X * (Y - Z)
X * (Y - Z) X*Y-X*Z

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 52

Fortran in details (4)

You have been warned.

The inclusion of parentheses may change the mathematical value of an
expression. For example, the two expressions A*I/J and A*(I/J) may
have different mathematical values if I and J are of type integer.

Difference between C=(F-32)*(5/9) and C=(F-32)*5/9.

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 53

Enough standard, the rest is in the manual

(yes, you should read the manual of your favorite language
and also that of your favorite compiler)

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 54

The C philosophy

The “C11” standard:
International Standard ISO/IEC ISO/IEC 9899:2011.

Contrary to Fortran, the standard imposes an order of evaluation

Parentheses are always respected,
Otherwise, left to right order with usual priorities
If you write x = a/b/c/d (all FP), you get 3 (slow) divisions.

Consequence: little expressions rewriting

Only if the compiler is able to prove that the two expressions always
return the same FP number, including in exceptional cases

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 55

Finally we can fix this program

1 float ref , index;
2

3 ref = 169.0 / 170.0;
4

5 for (i = 0; i < 250; i++) {
6 index = i;
7 if (ref == (index / (index + 1.0))) break;
8 }
9

10 printf ("i=%d\n",i);

(Note to self: fix in one character because no double rounding in
169.0/170.0.)

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 56

C in the gory details

Morceaux choisis from appendix F.8.2 of the C11 standard:

Commutativities are OK

x/2.0 may be replaced with 0.5*x,
because both operations are always exact in IEEE-754.

but x/5.0 may not be replaced with 0.2*x

(C won’t introduce the Patriot bug)

x*1 and x/1 may be replaced with x

x-x may not be replaced with 0

unless the compiler is able to prove that x will never be ∞ nor NaN

Worse: x+0 may not be replaced with x

unless the compiler is able to prove that x will never be −0
because (−0) + (+0) = (+0) and not (−0)

On the other hand x-0 may be replaced with x

if the compiler is sure that rounding mode will be to nearest.

x == x may not be replaced with true

unless the compiler is able to prove that x will never be NaN.

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 57

Obvious impact on performance

Therefore, default behaviour of commercial compiler tend to ignore this
part of the standard...
But there is always an option to enable it.

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 58

The C philosophy (2)

So, perfect determinism wrt order of evaluation

Strangely, intermediate precision is not determined by the
standard: it defines a bottom-up minimum precision, but invites
the compiler to take the largest precision which is larger than this
minimum, and no slower

Idea:

If you wrote float somewhere, you probably did so because you
thought it would be faster than double.
If the compiler gives you long double for the same price,
you won’t complain.

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 59

Drawbacks of C philosophy

Small drawback

Before SSE, float was almost always double or double-extended
With SSE, float should be single precision (2-4× faster)
Or, on a newer PC, the same computation became much less
accurate!

Big drawbacks

The compiler is free to choose which variables stay in registers, and
which go to memory (register allocation/spilling)
It does so almost randomly (it totally depends on the context)
But... storing a float variable in 64 or 80 bits of memory instead of
32 is usually slower, therefore (C philosophy) it should be avoided.
Thus, sometimes a value is rounded twice, which may be even less
accurate than the target precision
And sometimes, the same computation may give different results at
different points of the program.

The sort bug explained (because double promoted to 80 bits)

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 60

Quickly, Java

Integrist approach to determinism: compile once, run everywhere

float and double only.
Evaluation semantics with fixed order and precision.

⊕ No sort bug.
	 Performance impact, but... only on PCs (Sun also sold SPARCs)
	 You’ve paid for double-extended processor, and you can’t use it

(because it doesn’t run anywhere)

The great Kahan doesn’t like it.

Many numerical unstabilities are solved by using a larger precision

Look up Why Java hurts everybody everywhere on the Internet

I tend to disagree with him here. We can’t allow the sort bug.

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 61

Quickly, Python

Floating point numbers
These represent machine-level double precision floating point numbers.
You are at the mercy of the underlying machine architecture (and C or
Java implementation) for the accepted range and handling of overflow.

You have been warned.

Python does not support single-precision floating point numbers; the
savings in processor and memory usage that are usually the reason for
using these is dwarfed by the overhead of using objects in Python, so
there is no reason to complicate the language with two kinds of floating
point numbers.

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 62

Conclusion

Introduction

Facts and figures

Some common misconceptions about floating point

The floating-point software/hardware stack

Conclusion

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 63

A historical perspective

Before 1985, floating-point was an ugly mess

From 1985 to 2000, the IEEE-754 standard becomes pervasive,
but the party is spoiled by x87 messy implementation WRT
extended precision

Newer instruction sets solve this, but introduce the FMA mess

2008 IEEE 754-2008 cleans all this, but adds the decimal mess

and then arrives the multicore mess (determinism lost forever)

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 64

It shouldn’t be so messy, should it?

Don’t worry, things are improving

SSE2 has cleant up IA32 floating-point

Soon (AVX/SSE5) we have an FMA in virtually any processor and
we may use the fma() to exploit it safely and portably

The 2008 revision of IEEE-754 addresses the issues of

reproducibility versus performance
precision of intermediate computations
etc

but it will take a while to percolate to your programming
environment

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 65

To finish on a positive note

Feel in control

Floating-point computing is well thought out and well documented.

Understand the articulation between hardware and software,

... and then, go RTFM (all of them).

... and ask us questions! Now, or later when floating-point bites you.

To probe further

D. Goldberg: What Every Computer Scientist Should Know About
Floating-Point Arithmetic (Google will find you several copies)

The web page of William Kahan at Berkeley.

The web page of the AriC group.

Handbook of Floating-Point Arithmetic,
by Muller et al.

Florent de Dinechin, projet AriC Que calcule vraiment un ordinateur? 66

	Introduction
	Facts and figures
	Some common misconceptions about floating point
	The floating-point software/hardware stack
	Conclusion

