

# CIPZINC Search as Constraint Satisfaction published in PPDP'15 (Principles and Practice of Declarative Programming)

Thierry Martinez, François Fages, Sylvain Soliman

EPI Lifeware, Inria Paris–Rocquencourt, France

ANR project Net-WMS-2 Networked Warehouse Management Systems 2: Packing with Complex Shapes.

#### **Search Strategy for Constraint Programming**

Constraint programming

#### Korf's packing problem

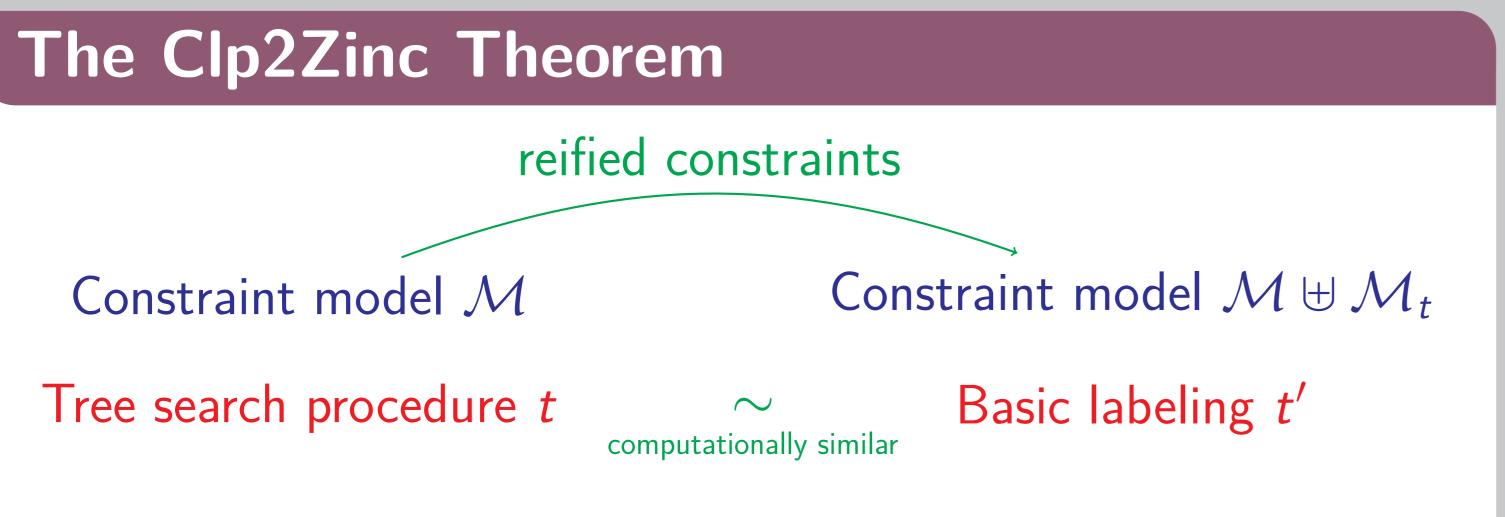
Given an integer  $n \ge 1$ , find an enclosing rectangle of smallest area containing *n* squares from sizes  $1 \times 1$ ,  $2 \times 2$ , up to  $n \times n$ ,



high level MiniZinc relational

hardly declarative very dependent to the solver

Search procedure is crucial to solve hard combinatorial (NP-complete) problems.



Reified constraints:  $X = 1 \Leftrightarrow c$  is true.

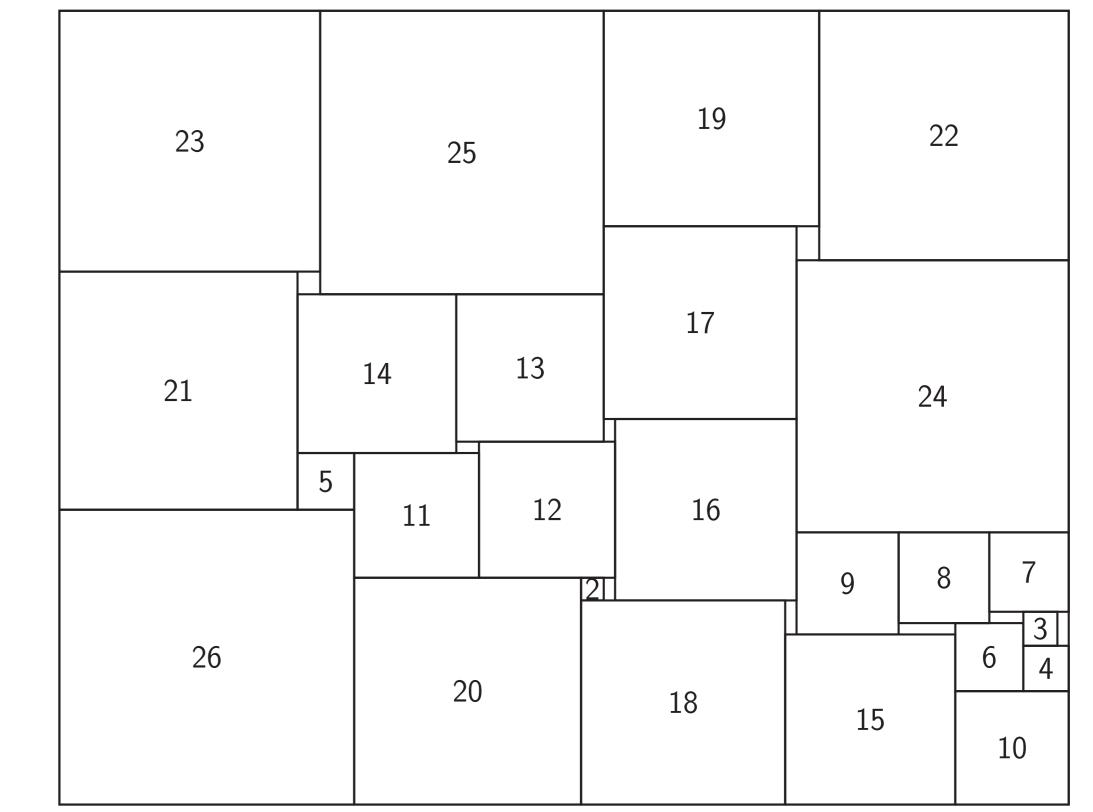
### ClpZinc

A Modeling Language for Constraints and Search.

#### without overlap.

2008. Search strategies for rectangle packing. H. Simonis and B. O'Sullivan. Proceedings of CP'08.

One **provably optimal placement** for n = 26:



In practice, ClpZinc programs is  $2-3 \times$  slower than native programs: the constant is small w.r.t. to the combinatorial complexity.

• Modeling search independently from the underlying constraint solver through tree search procedures with state variables. Extending MiniZinc with Horn clauses with constraints (Prolog-like search description language).

Available compiler targeting most common solvers:

http://lifeware.inria.fr/~tmartine/clp2zinc

#### **Dichotomic Search: The Code**

```
dichotomy(X, Min, Max) :-
   dichotomy(X, ceil(\log(2, Max - Min + 1))).
dichotomy(X, Depth) :-
   Depth > 0,
   Middle = (min(X) + max(X)) div 2,
   (X \le Middle ; X > Middle),
   dichotomy(X, Depth - 1).
dichotomy(X, 0).
var 0..5: x;
:- dichotomy(x, 0, 5).
```

## Meta-interpretation, beyond tree search

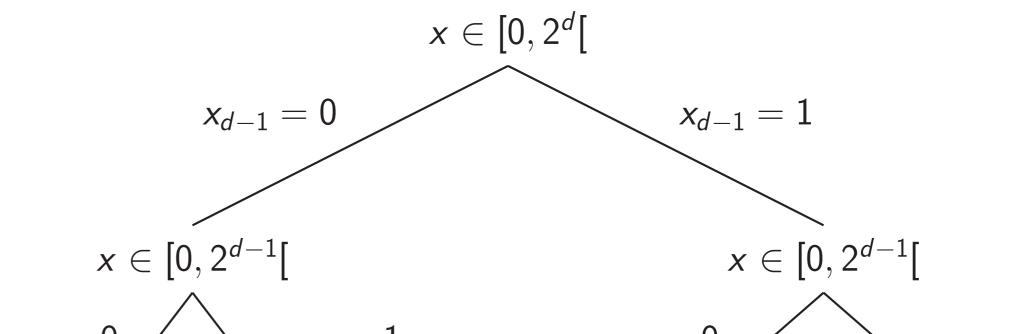
#### **Meta-interpretation:**

Limited discrepancy search (LDS) Symmetry breaking during search (SBDS)

State variables, persistent through backtracking: Optimization procedure, branch-and-bound.

# **Dichotomic Search: The Search Tree**

For  $x \in [0, 2^d]$ . Obtained by **domain filtering** and **constraint propagation** of the equality  $x = \sum_{0 \le k \le d} x_k 2^k$  with  $x_k \in \{0, 1\}$ .



#### Interval Splitting: The Code

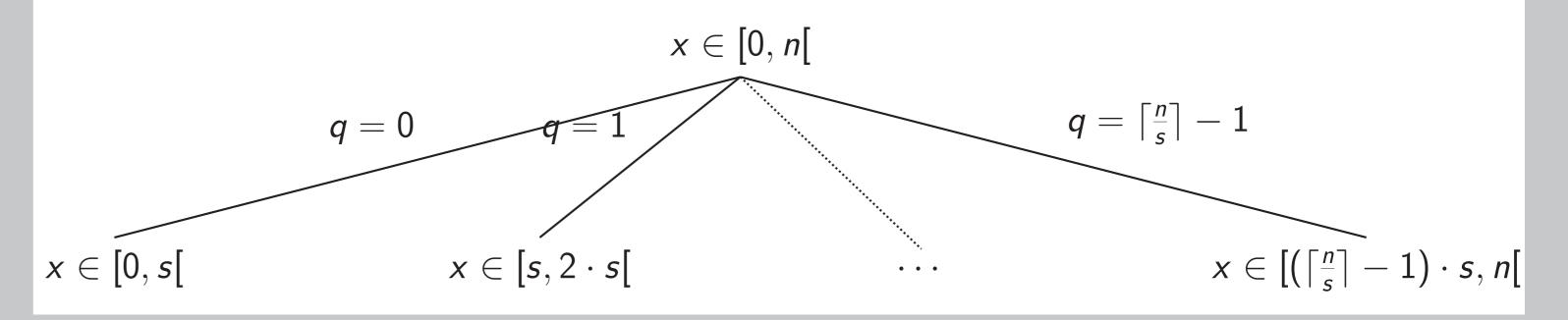
http://lifeware.inria.fr/

interval\_splitting(X, Step, Min, Max) :- $Min + Step \le Max$ , NextX = min(X) + Step, X < NextXX >= NextX. interval\_splitting(X, Step, Min + Step, Max) interval\_splitting(X, Step, Min, Max) :-Min + Step > Max. var 0..5: x; :- interval\_splitting(x, 2, 0, 5).

### $x_{d-2} = 0$ $x_{d-2} = 1$ $x_{d-2} = 0$ $x_{d-2} = 1$ $x \in [0, 2^{d-2}]$ $x \in [2^{d-2}, 2^{d-1}]$ $x \in [2^{d-1}, 2^{d-1} + 2^{d-2}]$ $x \in [2^{d-1} + 2^{d-2}, 2^d]$

# Interval Splitting: The Search Tree

For a fixed step  $s \ge 1$  and for  $x \in [0, n[$ . Obtained by **domain filtering** and **constraint propagation** of the equality  $x = s \times q + r$  where  $r \in [0, s[$ .



{Thierry.Martinez, Francois.Fages, Sylvain.Soliman}@inria.fr