
An industrial tool for scientific computing:
PABLO - PArallel Balanced Linear Octree

Marco Cisternino, Institut de Mathematiques de Bordeaux, OPTIMAD
Engineering Srl

Edoardo Lombardi, OPTIMAD Engineering Srl

Contacts

Marco Cisternino, marco.cisternino@math.u-bordeaux1.fr
Edoardo Lombardi, edoardo.lombardi@optimad.it
http://www.optimad.it/products/pablo/ -
https://github.com/optimad/PABLO

Introduction

PABLO is C++/MPI library
for managing parallel linear
octree/quadtree. It has been
developed at OPTIMAD En-
gineering Srl and it has been
pre-released under the GNU
Lesser General Public License.
The aim of the project is to provide
users with a tool to manage par-
allel adaptive grid of quadrilater-
als/hexahedra avoiding burden of
implementing MPI instructions in
their applications code.

Figure 1

Template C++ classes in the di-
mension parameter have been
used, providing the user with the
opportunity of writing its applica-
tion code independently from the
dimension of the problem. Actu-
ally 2D and 3D specialization of
PABLO are available.

Basic Principle I

The basic idea in PABLO is the
Morton Index. This indexing sys-
tem yields:

• a global persistent label for ev-
ery element (M),

• a local non-persistent always
consecutive numbering (N),
called Z-curve.

M=0
N=0

M=4
N=1

M=8
N=2

M=12
N=3

M=13
N=4

M=14
N=5

M=15
N=6

0

1

2

3

0 1 2 3

 b=2
p=(3,2)=(11,10)

 11 10

 1101 = 13

Figure 2. Interleaving example (left),
Z-curve (right)

Given a max level (b) of refinement
starting from an initial element of
level = 0, a system of global log-
ical coordinates for one of the el-
ement nodes can be defined. The
Morton index is obtained by inter-
leaving of the binary representa-
tion of these coordinates using b-
bits.

Basic Principle II

The elements of PABLO are
uniquely defined by their coordi-
nates and level. By this way, the
memory footprint is about ~30B
per element.
Moreover, only existing element
(leaves) are stored and a linear
container can be used.

Figure 3. See Fig. 2, red is for stored elements.

The user is free to attach any kind
of data (POD datatype or C++
available structures) to each ele-
ment by using the local consecu-
tive numbering and the favourite
data container.
Finally, at the moment an embed-
ded translation/scaling mapping
from logical to problem space is
implemented.
In future, the user should be able
to introduce arbitrary mappings.

Adaptive Mesh Refinement

Both element refining and coars-
ening procedures are available in
PABLO. Because of the possible
concurrency and incompatibility
between this two procedure, we
decided to favour the refinement
of elements for the sake of details
resolution.
The adapting procedure is based
on markers. Each element can be
marked by a signed integer defin-
ing how many times it should re-
fined/coarsen.

Figure 4

Therefore, a simple call to an
adapting method changes oppor-
tunely the grid.
A mapper can be obtained in or-
der to map user data from the pre-
vious to the actual grid.
Currently, maximum level of
depth are 32 for 2D meshes and 21
for 3D ones.

2:1 Balance

PABLO allows the user to choose
to set the maximum level differ-
ence between neighbours to 1 for
any single element. This choice
can be locally applied to the single
element.
This constraint yields locally or
globally graded meshes. The
algorithm changes the user set
markers using an iterative proce-
dure.
The neighbours across all codi-
mension entities can be balanced
hierarchically, e.g. balancing
across corners in 2D it would also
mean balancing across faces.

Figure 5. Balanced (yellow) - Non Balanced
(blue)

Parallelism

PABLO is based on data paral-
lelism paradigm using Message
Passing.
The partitioning of the grid fol-
lows the ordering given by The
Morton Index.
Actually, the number of elements
is equally distributed among the
processes.
In the future, element computa-
tional weights will be introduced
in order to have computational
cost partitions.

Figure 6.Different colors for different processes

The Curiously Recurrent Tem-
plate Pattern has been used to
implement user data interfaces.
These interfaces avoid the user to
explicitly call MPI routine in order
to communicate data. Communi-
cations are, therefore, completely
transparent to the user.

Dynamic Load Balance

Every time the adapting proce-
dure yields an unbalanced parti-
tion of the elements, the use can
dynamically rebalance the grid
and the data.

Figure 7.Different colors for different processes

Moreover, entire families of
elements (until a user defined
level starting from the finest
existing one) can be kept on
the same process in order to
limit communications (e.g. pro-
jection/restriction operators in
multi-level algorithms).

Documentation

PABLO’s Doxygen documentation and some simple tutorials can be
found here
http://optimad.github.io/PABLO/

Current Applications in Bordeaux

Currently PABLO is being used in
the following projects:
• Phase changing materials sim-

ulation (A. Raeli, M. Azaïez,
A. Iollo, M. Bergmann IMB-
INRIA-IPB)

• Electros, electrostrictive mate-
rials simulation (M. Cistern-
ino, A. Colin, P. Poulin, L.
Weynans, A. Iollo IMB-INRIA-
CRPP)

• Python wrapping for particle
flows (F. Tesser, A. Iollo, M.
Bergmann IMB-INRIA)

• Polyatomic Rarefied Gas Flow
(F. Bernard IMB-INRIA)

Future Developments

As soon as possible we aim to
introduce more features and a
bunch of them follows:

• periodic boundary condi-
tions

• degrees of freedom on inter-
sections

• arbitrary ghost layer depth

• nesting of PABLOs

• unstructured grids of PAB-
LOs

Join the community and help us
in the PABLO’s development!

