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Introduction

Today’s large scale simulations can only be run in parallel, because many meshes
are now too big to fit in the memory of a single computer. Since shared-memory
architectures are subject to memory bottlenecks, scalability can only be achieved
by using distributed-memory architectures such as workstation clusters. There-
fore, a prerequisite for such simulations is to be able to generate huge meshes
in a parallel, distributed-memory fashion. Moreover, in the case where users
would like to perform mesh adaptation, the latter must also be performed in
parallel.

Context

• Numerical simulations are needed in multiple
domains including:

– thermonuclear fusion

– aeronautics

– meteorology, . . .

• Problems become bigger and more and more
complex: numerical simulations cannot be
run on a single workstation
→ Want of parallelized computations
→ Need to distribute data across the proces-
sors: domain decomposition

• Space discretization:

– mesh

• Finite number of points on which values of
the problem are computed, e.g.:

– temperature

– pressure

– speed,. . .

• Solution precision depends on mesh quality:

– need for remeshing

State of the art

• First class of parallel remeshing techniques:

– Parallelization of existing sequential remeshing techniques

∗ introduced in 1996 [1] for 2D meshes

∗ 3D remeshing in 2000 for homogeneous meshes [8]

∗ Delaunay triangulation in 2003 [3]

∗ 3D remeshing for mixed meshes [7]

– Problems:

∗ Difficulties to parallelize each operator of the remesher

∗ Remeshing some element requires neighborhood information

∗ Too much communication between subdomains is required to achieve
quality as high as in sequential processing

→ This class of parallel remeshing methods cannot handle large-size meshes
distributed across a large number of processors

• Second class of parallel remeshing:

– Re-use sequential remeshers in a parallel framework:

∗ introduced in 2000 [4, 6]

∗ 3D remeshing for mixed meshes [2]

∗ remeshing with hierarchical transport [5]

∗ multi-grid remeshing [9]

→ Our approach is to generalize this class of parallel remeshing techniques
so as to allow for plugging-in any sequential remesher

Data structures for parallel remeshing

Mesh: Mesh representation:

• The same mesh can lead to different enriched graphs

– Depending on the requirements of the numerical schemes

• Distributed mesh on three processors

Parallel remeshing

Some results

• Parallel remeshing on isotropic mesh

PaMPA-MMG3D4
on 240 processors

Initial number of elements 27 044 943
Final number of elements 609 671 387

Elapsed time 00h34m59s
Elapsed time × number of PEs 139h56m

Smallest edge length 0.2911
Largest edge length 8.3451

Worst element quality 335.7041
% element quality between 1 and 2 98.92%

% edge length between 0.71 and 1.41 97.20%

• Parallel remeshing on anisotropic mesh

PaMPA-MMG3D4
on 48 processors

Initial number of elements 715 791
Final number of elements 29 389 210

Elapsed time 00h34m
Elapsed time × number of PEs 27h12m

Smallest edge length 0.1116
Largest edge length 8.2191

Worst element quality 14.8259
% element quality between 1 and 2 99.61%

% edge length between 0.71 and 1.41 93.65%

• Mesh adaptation within adaptation loop:

– Solve transsonic Eularian flow arround a M6 swing

– Discretisation using a residual distribution scheme

– Metric based on an a posteriori error estimate of the interpolation error

Volume cut Density field

PaMPA-MMG3D5 MMG3D5
on 5 processors on 1 processor

Initial number of elements 570 775
Final number of elements 5 089 972 5 132 259

Elapsed time 00h07m 00h29m
Elapsed time × number of PEs 00h34m 00h29m

Smallest edge length 0.0422 0.2092
Largest edge length 2.4416 2.4416

Worst element quality 26.42 9.12
% element quality greater than 0.5 99.66% 99.65%

% edge length between 0.71 and 1.41 96.62% 95.67%
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