
PaMPA
Parallel Mesh Partitioning
and Adaptation
Cédric Lachat1, François Pellegrini2,3,1 and Cécile Dobrzynski4,1

Tel: 05 35 00 26 30
Mail: cedric.lachat@inria.fr
TADaaM Team
Inria Bordeaux – Sud-Ouest
200 Avenue de la Vieille Tour
33405 Talence Cedex

Introduction

Today’s large scale simulations can only be run in parallel, because many meshes
are now too big to fit in the memory of a single computer. Since shared-memory
architectures are subject to memory bottlenecks, scalability can only be achieved
by using distributed-memory architectures such as workstation clusters. There-
fore, a prerequisite for such simulations is to be able to generate huge meshes
in a parallel, distributed-memory fashion. Moreover, in the case where users
would like to perform mesh adaptation, the latter must also be performed in
parallel.

Context

• Numerical simulations are needed in multiple
domains including:

– thermonuclear fusion

– aeronautics

– meteorology, . . .

• Problems become bigger and more and more
complex: numerical simulations cannot be
run on a single workstation
→ Want of parallelized computations
→ Need to distribute data across the proces-
sors: domain decomposition

• Space discretization:

– mesh

• Finite number of points on which values of
the problem are computed, e.g.:

– temperature

– pressure

– speed,. . .

• Solution precision depends on mesh quality:

– need for remeshing

State of the art

• First class of parallel remeshing techniques:

– Parallelization of existing sequential remeshing techniques

∗ introduced in 1996 [1] for 2D meshes

∗ 3D remeshing in 2000 for homogeneous meshes [8]

∗ Delaunay triangulation in 2003 [3]

∗ 3D remeshing for mixed meshes [7]

– Problems:

∗ Difficulties to parallelize each operator of the remesher

∗ Remeshing some element requires neighborhood information

∗ Too much communication between subdomains is required to achieve
quality as high as in sequential processing

→ This class of parallel remeshing methods cannot handle large-size meshes
distributed across a large number of processors

• Second class of parallel remeshing:

– Re-use sequential remeshers in a parallel framework:

∗ introduced in 2000 [4, 6]

∗ 3D remeshing for mixed meshes [2]

∗ remeshing with hierarchical transport [5]

∗ multi-grid remeshing [9]

→ Our approach is to generalize this class of parallel remeshing techniques
so as to allow for plugging-in any sequential remesher

Data structures for parallel remeshing

Mesh: Mesh representation:

• The same mesh can lead to different enriched graphs

– Depending on the requirements of the numerical schemes

• Distributed mesh on three processors

Parallel remeshing

Some results

• Parallel remeshing on isotropic mesh

PaMPA-MMG3D4
on 240 processors

Initial number of elements 27 044 943
Final number of elements 609 671 387

Elapsed time 00h34m59s
Elapsed time × number of PEs 139h56m

Smallest edge length 0.2911
Largest edge length 8.3451

Worst element quality 335.7041
% element quality between 1 and 2 98.92%

% edge length between 0.71 and 1.41 97.20%

• Parallel remeshing on anisotropic mesh

PaMPA-MMG3D4
on 48 processors

Initial number of elements 715 791
Final number of elements 29 389 210

Elapsed time 00h34m
Elapsed time × number of PEs 27h12m

Smallest edge length 0.1116
Largest edge length 8.2191

Worst element quality 14.8259
% element quality between 1 and 2 99.61%

% edge length between 0.71 and 1.41 93.65%

• Mesh adaptation within adaptation loop:

– Solve transsonic Eularian flow arround a M6 swing

– Discretisation using a residual distribution scheme

– Metric based on an a posteriori error estimate of the interpolation error

Volume cut Density field

PaMPA-MMG3D5 MMG3D5
on 5 processors on 1 processor

Initial number of elements 570 775
Final number of elements 5 089 972 5 132 259

Elapsed time 00h07m 00h29m
Elapsed time × number of PEs 00h34m 00h29m

Smallest edge length 0.0422 0.2092
Largest edge length 2.4416 2.4416

Worst element quality 26.42 9.12
% element quality greater than 0.5 99.66% 99.65%

% edge length between 0.71 and 1.41 96.62% 95.67%

Bibliography

[1] J. G. Castanos and J. E. Savage. The dynamic adaptation of parallel mesh-
based computation. 1996.

[2] P. A. Cavallo, N. Sinha, and G. M. Feldman. Parallel unstructured mesh
adaptation method for moving body applications. AIAA journal, 43(9):1937–
1945, 2005.

[3] N. Chrisochoides and D. Nave. Parallel delaunay mesh generation kernel.
International Journal for Numerical Methods in Engineering, 58(2):161–176,
2003.

[4] T. Coupez, H. Digonnet, and R. Ducloux. Parallel meshing and remeshing.
Applied Mathematical Modelling, 25(2):153–175, 2000.

[5] H. Digonnet, M. Bernacki, L. Silva, and T. Coupez. Adaptation de maillage
en parallèle, application à la simulation de la mise en forme des matériaux. In
Congrès Français de Mécanique Grenoble-CFM 2007, page 6 pages, Greno-
ble, France, 2007. http://hdl.handle.net/2042/16046.

[6] C. Dobrzynski and J. Remacle. Parallel mesh adaptation. International

Journal for Numerical Methods in Engineering, 2007.

[7] O. Lawlor, S. Chakravorty, T. Wilmarth, N. Choudhury, I. Dooley, G. Zheng,
and L. Kalé. Parfum: a parallel framework for unstructured meshes for scal-
able dynamic physics applications. Engineering with Computers, 22:215–
235, 2006. 10.1007/s00366-006-0039-5.

[8] L. Oliker, R. Biswas, and H. N. Gabow. Parallel tetrahedral mesh adaptation
with dynamic load balancing. Parallel Computing, 26(12):1583–1608, 2000.

[9] M. Ramadan, L. Fourment, and H. Digonnet. A parallel two mesh
method for speeding-up processes with localized deformations: application
to cogging. International Journal of Material Forming, 2:581–584, 2009.
10.1007/s12289-009-0440-x.

1© 2©
3© 4©


