Case Study: Multi-storey carebark

You are acting as a requirements engineering consultant to a client who wants to automate his existing multi-storey car park with time-stamped ticket-issuing machines, payment machines, closed-circuit television cameras in order to deter both theft and nonpayment, and automatic

Question:

what are the elements related

- to the customer **problem**
- to the **solution** he has in mind?

barriers operated by

Without goal orientation...

Car Park **Management System**

Ticket

Issuing Machine (TIM)

Given

Car in front of TIM

When

Car driver pushes on *entry request* button

Then

System delivers one ticket and opens barrier

Verification: the specification complies with the scenario **Validation**: Is this behaviour what the stakeholders want?

First Goal Identification

You are acting as requirements engineering consultant to a client who wants to automate his existing multi-storey car park with time-stamped ticket-issuing machines, payment machines, closed-circuit television cameras in order to deter both theft and non-payment, and automatic barriers operated by validated (paid-up) tickets.

- Candidate goals: the problem to solve
- Technical elements: contraints on the solution
 - Typical: lots of elts related to a solution

NHY

- Non payment deterred : WHY?
- New goals:

Car park owner sati

Car park owner satisfied

Car park owner satisfied

WOF

- Non payment deterred : HOW?
- New goal: Car exit iff payment of a

Tactic: milestone decomposition

Not yet addressing solution techniques
Just **analysing the pb** based on what's
known about the needs

RESPECT-IT RESPECT-IT RESPECT-IT REQUIREMENTS & SPECIFICATION TECHNIQUES FOR INFORMATION TECHNOLOGY RESPECT-IT RESPECT-IT

Fee computed

- Several fee policies could be applied:
 - Fee proportional to stay duration (*)
 - Fixed fee
 - Fixed fee per period (*)
 - Fee dependent on user classification
 - **–** ...
- Case decomposition tactics
- Applicable cases need to be discussed with the customer.
 - Customer selection: (*)

Alternatives

- HOW to compute the stay duration?
 - System with tickets
 - System with cameras reading plate numbers
 - Car equipped with id-system
- Goal analysis: allows one to...
 - envision several solutions and position them correctly
 - confirm that the expressed needs are real
 - think about the system

Alternatives

After restructuring...

Behavioural specification

UML sequence or activity

CPC read tidet fromtank neared (tracketid, correct tris entry outhorized release Ticke **Makes behaviours Easy translation**

more/fully deterministic wrt goals from leaf goal diagrame order on AND-refinement)

Leaf level

Keypoints:

- Important to keep rationales for behaviours
- Traçability

Thefts deterred

First idea: case decomposition

Thefts deterred (cont'd)

Directed goal graph, not a tree

ake all viewpoints into account

- Viewpoints:
 - Manager
 - Owner
 - User
 - Authorities
- Source for conflicts

Example of user goals

Other goals: cheap price, security, user-

Conflicts

- between goals of a same agent
- between goals of several agents

RESPECT-IT RESPECT-IT RESPECT-IT REOUIREMENTS & SPECIFICATION TECHNIOUES FOR INFORMATION TECHNOLOGY RESPECT-IT RESPECT-IT

Conflict resolution

 Different techniques, e.g., strengthening conflicting goal to

Constant watch kept over all sensitive areas

Cameras images analyzed and recorded only for security reasons

Piecing a jigsaw puzzle together

RESPECT-IT RESPECT-IT REQUIREMENTS & SPECIFICATION TECHNIQUES FOR INFORMATION TECHNOLOGY RESPECT-IT RESPECT-IT

Dbstacles

- De-idealise the model: analyse all what could go wrong
- Process:
 - 1. Negate the requirement or the expectation
 - 2. Find the obstacle origin and motivation
 - 3. Evaluate the obstacle
 - 4. Solve the obstacle
 - 5. Integrate in the goal graph

xample

ESPECT-IT RESPECT-IT RESPECT-IT REQUIREMENTS & SPECIFICATION TECHNIQUES FOR INFORMATION TECHNOLOGY RESPECT-IT RESPECT-IT

Example (step 5)

Refinements complemented with obstacle

RESIDENTIAL RESPECTION REQUIREMENTS & SPECIFICATION TECHNIQUES FOR INFORMATION TECHNOLOGY RESPECT-IT RESPECT-IT

Example

RESPECT-IT RESPECT-IT REQUIREMENTS & SPECIFICATION TECHNIQUES FOR INFORMATION TECHNOLOGY RESPECT-IT RESPECT-

The best defense, ...

- Playing the bad guy
- Define the anti-goals and refine them into anti-requirements
- Identify the vulnerabilities
- Solve the anti-requirements and the vulnerabilities

Think negatively...

X Pay less than the due fare

X Cheat on the full time interval

X Cheat on the full time interval

X Cheat on the entry time

XTicket declared lost, stolen, destroyed and short duration claimed

O No way to prove duration without ticket

O Anticipate payment

X Use obsolete ticket to exit

Systematic analysis of delinquent behaviours

Adopt counter-measures

Advanced feature: templaté

- Generic goal graph providing a standardized structure
- To be selected at project start
- Covers
 - **NFR** topics (security, reliability, ...)
 - Possibly functional goals related to the project domain (reused from past projects)
 - NFR graph can be used as a context of the context o

Template: extract

Advanced feature: Patterns Generic piece of goal graph

Instantiation to concrete domains

Dbject Modelling

You are acting as requirements engineering consultant to a client who wants to automate his existing multi-storey car park with time-stamped ticket-issuing machines, payment machines, closed-circuit television cameras to deter both theft and non-payment, and automatic barriers operated by validated (paid-up) tickets.

- Candidate objects: domain specific concepts
 - Object attributes: object qualification

First object inventory

Statement	Model
Ticket-issuing machine	Ticket Issuing Machine (TIM)
Ticket	Ticket
Payment machine	Payment machine
Closed-circuit television camera	Surveillance system
Automatic barrier operated by validated tickets	Exit station, Automatic barrier
Car park	Car Park System
Ticket	Attribute
Stamped	entry time
Validated (payed up)	payed

Dbiect definition

- Agent Stereotype: if direct operational behaviour (not by means of an aggregation relationship)
- Attribute type: not needed at this stage

RESPECT TO SPECIFIC THE TUBEMENTS & SPECIFICATION TECHNIQUES FOR INFORMATION TECHNOLOGY RESPECT-IT RESPECT-I

Operationalisation I

Concerned agents: CPC and TIM

RESPECT-IT RESPECT-IT RESPECT-IT REQUIREMENTS & SPECIFICATION TECHNIQUES FOR INFORMATION TECHNOLOGY RESPECT-IT RESPECT-IT

Dperationalisation: TIM

Operationalisation: CPC

No multi-session yet!

Dperationalisation II

Multi-session payment

payed∏ payedFee

State-transition of a ticket

• GORE:

- Favors creativity
 - alternatives on AND/OF
- Favors completeness:
 - Goals not refined, No responsible agents
 - Refinement tactics and patterns (missing goals)
 - Challenging goals (obstacles, threats)
- Favors communication with the customers

