
BigGrph: technical challenges when dealing with VERY large graphs

BigGrph: technical challenges when dealing with
VERY large graphs

Luc Hogie (CNRS), Michel Syska (Univ. Côte d’Azur),
Stéphane Pérennes (CNRS), Nicolas Chleq (Inria)

23 juin 2017, MaDICS days



BigGrph: technical challenges when dealing with VERY large graphs

Who we are

I3S is the computer science laboratory of Université Côte d’Azur.
It is located at the heart of Sophia Antipolis.

COATI — theoretical and experimental aspects of graph
algorithms. Software production: 3 librairies:

MascOPT network optimization (2001-)
Grph computing large graphs in-memory (2010-)

BigGrph platform — distributed library for computing
largER graphs (2014-)

SCALE — theoretical and experimental aspects of distributed
computing. Software: ProActive, a platform for
component-based computing.

COATI is hosted/supported by Inria.



BigGrph: technical challenges when dealing with VERY large graphs

What we want to do

The typical user is a researcher willing to:

testing/validating a distributed graph algorithm on a truely
distributed testbed

investigating the structure of large graphs

teaching

work from home, from hotels/campus anywhere in the world

My specific case was even worse: I started the development from a
campsite in the French countryside. The Wi-Fi connection was,
needless to say, very scarse. But it worked.



BigGrph: technical challenges when dealing with VERY large graphs

What is a graph?

G = (V ,E ) : V is the set of vertices, E is the set of arcs. The
graph is a data structure connecting vertices through arcs. We are
interested in the topology of the graph.



BigGrph: technical challenges when dealing with VERY large graphs

What is distributed graph?

The data-structure is split by its:

vertices 1 → {2, 5, 6}
2 → {2}
5 → {5, 2, 6, 3}

edges (1, 2)
(1, 5)
(1, 6)
(2, 1)
(5, 5)
(5, 2)
(5, 6)
(5, 3)



BigGrph: technical challenges when dealing with VERY large graphs

State of the Art: Bulk Synchronous Parallel (BSP)

BSP is an iterative distributed algorithm. It runs a sequence of
steps. A step:

all messages sent at the previous steps are delivered
all vertices in the graph are scheduled for execution

The algorithm stops when no messages are sent.



BigGrph: technical challenges when dealing with VERY large graphs

Dijkstra

Node are assigned their distance by messages. The source receives
message with value 0. Each vertex sends distance + 1 to its
neighbors. A vertex retains the minimum distance.

benefit from asynchronous BSP, with still exact results

the size of the message depends on the diameter (which may
be unkown)

problem Where to store the distance information?

solution in a distributed hashtable alongside to the distributed
adjacency table



BigGrph: technical challenges when dealing with VERY large graphs

State of the Art: existing platforms

We have evaluated the two main platforms: Giraph (atop Hadoop)
and GraphX (atop Spark). But they have:

limited support for graph and programming models

poor memory performance (GraphX can’t load our large
Twitter graph dataset)

unpredictable behavior (GraphX again)

steep learning curve (GraphX is written in Scala)

not targeted to experimentation (slow startup, poor
monitoring, etc)

not enough flexibility and documentation



BigGrph: technical challenges when dealing with VERY large graphs

To enable experimentation, we need a library which

supports multiple graph models (multigraphs, hypergraphs,
directed or not)

supports multiple programming models (not only BSP)

supports a large variety of cluster architecture (share-nothing
clusters, managed clusters (support for Torque))

is integrated to the development environment

starts quickly (hence fails quickly, fastening the
development/experimentation process)

runs quicker

automatized, easy to setup



BigGrph: technical challenges when dealing with VERY large graphs

Implementation language

Just like most of others, it is written in Java, because is it the
most used, taught, clean, portable, complete
language/platform today

some parts are written in POSIX Bash and use native tools

target platform: Unix 64-bit (all Linux distributions, MacOSX,
etc)



BigGrph: technical challenges when dealing with VERY large graphs

Graph distributed computing in one slide

To perform distributed graph computer, simply:

1 deploy the executable code

2 bootstrap the application

3 partition the graph, by loading each piece on cluster nodes

4 execute in parallel, communicate

5 get the result

Now let us detail.



BigGrph: technical challenges when dealing with VERY large graphs

Distribution infrastructure

Deploying the executabe code

If the computers do not share the file system, the code has to be
deployed.

1 problem some nodes may share a file system
solution detect the file system groups and deploy only to

one computer in a group

2 problem the upload of executable code to nodes takes
time (especially from French campsites)

solution using incremental deployment via rsync

Deployment is automatic and takes a couple of seconds!



BigGrph: technical challenges when dealing with VERY large graphs

Distribution infrastructure

Bootstrapping/quiting the distributed application

1 problem starting the distributed kernel
solution use password-less SSH to execute a server on

each node

2 problem stopping the distributed application
solution the server process exits when it detects that the

SSH connection is down

3 problem what to do with remote standard I/O streams?
solution they are forwarded back to the master node via

the SSH connection → remote errors appear
locally!



BigGrph: technical challenges when dealing with VERY large graphs

Distribution infrastructure

The lowest layer for distribution: how to execute code
remotely?

A typical client/server TCP architecture: servers receive and
execute request objects. Such an object embeds:

data (as serializable attributes)

code (as methods)

On reception of the object, the execute() method in invoked and
its return is sent back to the calling node.

during the executing, feedback can be sent.

any node can send requests to any other node (decentralized)



BigGrph: technical challenges when dealing with VERY large graphs

Distribution infrastructure

Objects are larger than RAM: split them!

Big objects are objects:

spanning multiple nodes

whose each piece can communicate with other pieces



BigGrph: technical challenges when dealing with VERY large graphs

Distribution infrastructure

A specific big object: the Distributed Hashtable

A hashtable is a set of (key , value) pairs. In a Distributed
Hashtable:

this set of pairs is distributed

the location of a given pair can be computed out of the key
itself



BigGrph: technical challenges when dealing with VERY large graphs

Distribution infrastructure

A specific distributed hashtable: the big adjacency table

A distributed adjacency table is a distributed hashtable in which:

keys are vertices (a vertex is an integer value in [0 264[, it uses
only 8 bytes in RAM)

values are sets of incident graph elements (neighbor vertices
or incident edges)

the location of a given element can be computed out of its
value



BigGrph: technical challenges when dealing with VERY large graphs

Distribution infrastructure

Coupling distributed adjacency tables: the big graph

dynamic directed multigraph

undirected graphs

forward navigation (through out-neighborhoods)

backward navigation (through in-neighborhoods)

both directions



BigGrph: technical challenges when dealing with VERY large graphs

Annoying problem: partitionning the graph

Partitioning the graph

Usually partitioning the graph consists in (as does by METIS and
the like):

analyzing its topology

in order to decide a target node for each vertex

But the graph is so large that it cannot be loaded. Only arbitrary
partitioning is available:

based on position in input file (done by GraphX)

based on vertex ID (vertexID % nbNodes)



BigGrph: technical challenges when dealing with VERY large graphs

Loading the partitions

Loading the partitions

We obtained the 2011-crawl of the Twitter graph. 250GB in a
large ADJ file. On a computer with 512GB of RAM, using C++,
loading the ADJ file from the local hard drive took 8h because:

hard drives have limited throughput

parsing takes time

building the graph takes time



BigGrph: technical challenges when dealing with VERY large graphs

Loading the partitions

Loading the partitions: BigGrph solution

By:

Using a quicker buffered I/O implementation

Using compact encoding, fastening the parsing

Optimizing graph insertion primitives

We managed to load the entire graph in 16mn on one node. By
partitioning the graph, it can be loaded in 4mn in parallel on 4
nodes.



BigGrph: technical challenges when dealing with VERY large graphs

Computing the graph

Computing models

In addition to supporting the standard BSP model, BigGrph
features:

Remote Procedure Call

scatter/gather (shared-nothing version of map/reduce)

message-passing

the asynchronous variant of BSP

mobile agent-based programming



BigGrph: technical challenges when dealing with VERY large graphs

Computing the graph

Use the Remote execution of code

A specific piece a code is requested to be executed on a specific
piece of the graph.

modify the graph remotely

return a value computed remotely

Useful to:

compute node-local properties

build higher-abstraction computing models



BigGrph: technical challenges when dealing with VERY large graphs

Computing the graph

Scatter/Gather

Done in parallel, this is scatter/gather, which is similar to
in-memory map/reduce

one node request the parallel execution of a code on a set of
nodes

waits for all, then get the results back

conclude (merge results?)

Useful to:

compute stats, finding vertices, counting, etc,

build higher-abstraction computing models



BigGrph: technical challenges when dealing with VERY large graphs

Computing the graph

BSP

Is it useful to implement many algorithms like:

Page Rank
Dijkstra, BFS
Connected Components
etc



BigGrph: technical challenges when dealing with VERY large graphs

Computing the graph

Asynchronous BSP

BSP is an iterative algorithm which split time in a sequence of
steps. Each step:

delivers all messages sent at the previous step

executes all vertices in the graph, in parallel

When used asynchronously:

messages are delivered as soon as they are sent

the notion of steps is loosened

convergence comes faster, but exact results are not guaranteed



BigGrph: technical challenges when dealing with VERY large graphs

Computing the graph

Mobile agents

A mobile agent is:

a piece a code executing on one node at a time

able to migrate to any other node proactively

It is useful to:

explore the graph following its edges/arcs

construct paths out of pre-computed distance tables (Dijkstra,
BFS, etc)

Useful to .



BigGrph: technical challenges when dealing with VERY large graphs

Computing the graph

On abstraction of model of programming model:
expressivity vs. performance

programming model at high-level of abstraction (BSP, agents)
provides expressivity

direct access to primitives at lowest layers of data-structures
and communications enables raw speed

BigGrph features both.



BigGrph: technical challenges when dealing with VERY large graphs

Computing the graph

Low-level primitives

When a code (BSP, agent, anything) runs on a node, it has full
access to low-level primitives. Low-level APIs allow the
programmer to:

manipulate node-local graph data-structures

send data to other node at the TCP level

It allows fast code but it can be nasty! Do not let children play
with it.



BigGrph: technical challenges when dealing with VERY large graphs

Computing the graph

Computing turns out to be slow: cost of communications

One common say: modern networks are as fast as memory bus
(smile).

memory type capacity access time

Cache a few MBs 0.2ns

Main Memory tens of GBs 3ns

SSD drive hundreds GBs 50µs

Hard disk 1-2 TBs 5ms

Local network TBs 5ms

data must be kept as close as possible from the processing unit

reduce to the minimum the data transfered

amortize the commnication cost by transferring large amount
of data



BigGrph: technical challenges when dealing with VERY large graphs

Algorithms

List of algorithms

Single-source shortest path (Dijkstra, BFS)

Page Rank

Connected components (considering undirected graphs)

Strongly Connected components (considering directed graphs)

Clustering coefficients, triangle counting

Numerous stats (degrees, counting, etc)



BigGrph: technical challenges when dealing with VERY large graphs

Algorithms

Breadth First Search (BFS)

Same as Dijkstra except that the first received distance is the
definitive one.

trick: using (synchronous) BSP, the superstep defines the
distance: messages do not need to carry information they are
just signals

one signal signal to a vertex is enough



BigGrph: technical challenges when dealing with VERY large graphs

Algorithms

Connected components

Find set of vertices that can reach each other.

each vertex send its ID to its neighbor

the minimum ID is retained as the component ID

problem Where to store the component ID information?

solution in a distributed hashtable alongside to the distributed
adjacency table



BigGrph: technical challenges when dealing with VERY large graphs

Algorithms

Strongly connected components (SCCs)

On one node: Tarjan’s algorithm performs very well. On multiple
nodes:

1 run Tarjan’s algorithm on each local piece, to produce of a
graph of local SCCs

2 BFS retaining the minimum value

3 reverse-BFS retaining the minimum value

problem so many problems...

solution an expert programmer took 1 month to implement it!



BigGrph: technical challenges when dealing with VERY large graphs

Algorithms

Local Clustering coefficient

The distance to which the 2-hop neighbors form a clique (complete
network)

1 retrieve number of arcs in the 2-hop neighborhood

2 compute nbArcs
n(n−1)

problem retrieving the 2-hop neighborhood is exceedlingly
expensive

solution ...



BigGrph: technical challenges when dealing with VERY large graphs

Algorithms

Conclusion: what we have after 3 years of intense
development

We have a flexible distributed graph computing platform which:

loads the graph 20x faster than Giraph

computes BFS 3x faster than Giraph, 4x faster than GraphX

uses 3x less memory than Giraph

can load the big Twitter database (even on 24GB
workstations) while GraphX cannot (even on 192GB cluster
calculators)



BigGrph: technical challenges when dealing with VERY large graphs

Algorithms

Conclusion: our experience in (graph) distributed
computing

distributed (graph) algorithms have exceedingling hard to
write

communications still are of extremely high penalty

many graph algorithms generate one result per vertex → the
result itself is huge and distributed: Processing the result is
also a distributed computing problem! The story starts
again



BigGrph: technical challenges when dealing with VERY large graphs

Algorithms

Demo

Is there some time left for quick demo?

graph size 189.K vertices, 6.87M edges

on 3 shared workstations in the lab at Sophia Antipolis

VPN connection through Eduroam Wi-Fi (not the best
configuration)


