
7/11/2017

1

Thinks Efficienty !!!

Marc Gaucheron, Intel PSG

2

Agenda

What Is FPGA ? 

▪ Anatomy of FPGA – 15mn

▪ FPGA development flow – 15mn

▪ High Level Synthesis Tools – 15mn

▪ OpenCL for FPGA – 2h00

– OpenCL SDK & Execution Model

– Optimizing Kernel For FPGA

▪ Conclusion – 15mn



7/11/2017

2

Acronyms

LUT- LookUp Table

LE – Logic Element

ALM – Adaptive Logic Module

LAB – Logic Array Block



7/11/2017

3

Field Programmable Gate Array (FPGA)

5

Logic

Logic

Logic

Logic

Logic

Logic

Logic

Logic

Logic

Programmable 
Switch Fabric

FPGA Logic blocks

6

FPGA logic is made up of Logic Elements (LEs) or Adaptive Logic Modules (ALMs)



7/11/2017

4

7

Logic Element (LE)

The Quartus Prime software automatically chooses the appropriate operation mode for individual 
functions for optimal performance

Normal Mode – Suited for general logic 
applications and combinational functions

Arithmetic Mode – Implementing adders, 
counters, accumulators, & comparators

Adaptive Logic Module (ALM)

8

One ALM contains 4 programmable 
registers, each with the following ports:

▪ Data
▪ Clock
▪ Synchronous & asynchronous clear 
▪ Synchronous load

Backward compatible with 4-input LUT 
architectures

Quartus Prime automatically configures 
ALMs for optimized performance

Adaptive 
LUT



7/11/2017

5

Logic Array Block (LAB)

9

LABs are group of LEs or ALMs

Row and column programmable interconnect

Interconnect may span all or part of the array

LABs

Row 

interconnec

t

Column 

interconnect
Segmented 

interconnects

FPGA Embedded Memory

10

Memory blocks

▪ Create on-board memory structures to support design

– Single/dual-port RAM

– ROM

– Shift registers or FIFO buffers

▪ Initialize RAM or ROM contents on power-on

– M9K, M10K, M20K

▪ Memory LABs (MLABs)

▪ eSRAM

ADDR_A

DATAIN_A

WE_A

CLK_A

ADDR_B

DATAIN_B

WE_B

CLK_B

DATAOUT_A DATAOUT_B

Embedded Memory Block



7/11/2017

6

11

Arria 10 Embedded Memories
Feature MLABs M20K

Maximum Performance 700 MHz 730 MHz

Total RAM Bits per Block 640 20,480

Total M20K Memory Bits (Mb) per Device 2-13 13-54

Port Width Configurations
32 x 16

32 x 18

32 x 20

16K x 1, 8K x 2

4K x 4, 5

2K x 8, 10

1K x 16, 20

512 x 32, 40

Parity ✓ ✓

Byte Enable ✓ ✓

Packed Mode ✓ ✓

Address Clock Enable ✓

Mixed Clock ✓ ✓

Mixed Width (for Dual Port modes) ✓ ✓

ECC Support ✓ Hard

Memory Modes

Single Port ✓ ✓

Simple & True Dual-Port ✓ ✓

Shift Register, ROM, FIFO ✓ ✓

DSP Block

12

Useful for DSP functions

High-performance multiply/add/accumulate operations



7/11/2017

7

Arria 10 DSP block

13

Up to 1.5 TFlops

14

Arria 10 Hard Memory Controller & PHY

Hard memory controller

▪ Saves logic and memory resources

– 5K LEs and 29 M20K blocks per x72 DDR3 IF

▪ Up to x144 support 

▪ Up to 4x72 DDR3 interfaces in a single device

Hard memory controller supports

▪ DDR4, DDR3, LPDDR3

▪ DDR4 up to 2400 Mbps

Arria 10 FPGA

Core Fabric

User Design

ECC

I/O Interface

Hard PHY

PHY Interface

Memory Controller

Hard Memory Controller & PHY

AXI/Avalon IF

DQSCMD/ADDR

Hard Nios  II
(calibration/ control)



7/11/2017

8

15

Core PLLs

16

Input/output/bidirectional

Multiple I/O standards

Differential signaling

Current drive strength

Slew rate

On-chip termination/pull-ups

Open drain/tri-state

FPGA IO Elements



7/11/2017

9

17

High Speed IO Transceivers

Bypass

Gearbox for 
configurable interface 

widths

Integrated protocol 
hard IP blocks

Low jitter programmable 
clock sources

Flexible clock 
distribution networks

Advanced adaptive 
equalization

Hard IP for 
PCIe Gen 2

18

Cyclone® 10 GX: GPIO Blocks

LVDS I/O Block 
Structure

3V I/O Block 
Structure*

I/O Lane

LVDS I/O Buffer Pair

LVDS I/O Buffer Pair

LVDS I/O Buffer Pair

LVDS I/O Buffer Pair

LVDS I/O Buffer Pair

LVDS I/O Buffer Pair

SERDES & DPA

SERDES & DPA

SERDES & DPA

SERDES & DPA

SERDES & DPA

SERDES & DPA

I/O PLL

I/O Center
I/O DLL

OCT

I/O CLK

VR

Hard Memory 
Controller and 
PHY Sequencer

I/O Lane

LVDS I/O Buffer Pair

LVDS I/O Buffer Pair

LVDS I/O Buffer Pair

LVDS I/O Buffer Pair

LVDS I/O Buffer Pair

LVDS I/O Buffer Pair

SERDES & DPA

SERDES & DPA

SERDES & DPA

SERDES & DPA

SERDES & DPA

SERDES & DPA

I/O Lane

LVDS I/O Buffer Pair

LVDS I/O Buffer Pair

LVDS I/O Buffer Pair

LVDS I/O Buffer Pair

LVDS I/O Buffer Pair

LVDS I/O Buffer Pair

SERDES & DPA

SERDES & DPA

SERDES & DPA

SERDES & DPA

SERDES & DPA

SERDES & DPA

I/O Lane

LVDS I/O Buffer Pair

LVDS I/O Buffer Pair

LVDS I/O Buffer Pair

LVDS I/O Buffer Pair

LVDS I/O Buffer Pair

LVDS I/O Buffer Pair

SERDES & DPA

SERDES & DPA

SERDES & DPA

SERDES & DPA

SERDES & DPA

SERDES & DPA

3V I/O Buffer Pair

3V I/O Buffer Pair

3V I/O Buffer Pair

3V I/O Buffer Pair

3V I/O Buffer Pair

I/O PLL

I/O Center
I/O DLL I/O CLK

VR

Hard Memory 
Controller and 
PHY Sequencer

I/O Lane

3V I/O Buffer Pair

3V I/O Buffer Pair

3V I/O Buffer Pair

3V I/O Buffer Pair

3V I/O Buffer Pair

3V I/O Buffer Pair

I/O Lane

3V I/O Buffer Pair

3V I/O Buffer Pair

3V I/O Buffer Pair

3V I/O Buffer Pair

3V I/O Buffer Pair

3V I/O Buffer Pair

I/O Lane

3V I/O Buffer Pair

3V I/O Buffer Pair

3V I/O Buffer Pair

3V I/O Buffer Pair

3V I/O Buffer Pair

3V I/O Buffer Pair

I/O Lane

3V I/O Buffer Pair

T
ra

n
sc

e
iv

e
r 

B
a

n
k

* Only a single 3V I/O Block in Cyclone 10 GX



7/11/2017

10

FPGA Programming

19

FPGAs use SRAM cell technology to program interconnect and LUT function levels

Volatile! Must be programmed at power-on!

SRAM

SRAM

SRAMSRAM SRAM

SRAM

Row/column 

interconnect 

junction

to IC 

switch

program 

enable

programmin

g bit

SRAM programming cell 

(latch)

20

FPGA Floorplan



7/11/2017

11

FPGA Architecture: Custom Operations Using Basic Elements

21

Wider custom operations are 
implemented by configuring and 
interconnecting Basic Elements

16-bit add

Your custom 64-bit 
bit-shuffle and encode

32-bit sqrt

…
FPGA Architecture: Memory Blocks

22

Memory
Block
20 Kb

addr

data_in
data_out

Can be configured and grouped 
using the interconnect to create 

various cache architectures



7/11/2017

12

FPGA Architecture: Memory Blocks

23

Memory
Block
20 Kb

addr

data_in
data_out

Can be configured and grouped 
using the interconnect to create 

various cache architectures

Lots of smaller 
caches

Few larger 
caches

FPGA Architecture: Floating Point Multiplier/Adder Blocks

24

data_in

Dedicated floating point 
multiply and add blocks

data_out



7/11/2017

13

FPGA Architecture: Configurable Routing

25

Blocks are connected into 
a custom data-path that 
matches your application.

FPGA Architecture: Configurable IO

26

The Custom data-path can 
be connected directly to 
custom or standard IO 

interfaces
for inline data processing



7/11/2017

14

28

VHDL, VERILOG vs C

VHDL Verilog C++



7/11/2017

15

29

VHDL, VERILOG vs C

VHDL Verilog C++

30

Traditional FPGA Design Process

HDL

Write HDL

Synthesize

Simulate

Repeat

Close Timing



7/11/2017

16

Tools Flow Overview

31

Design Files

Analysis & 
Elaboration

Synthesis 

Fitter

Constraints & 
settings

Functional 
Simulation

Gate-Level 
SimulationEDA Netlist Writer

Functional 
Netlist

Post-Fit Simulation 
Files

Programming & 
Configuration files

Assembler

TimeQuest 
Timing Analysis

EDA 
Libraries

HW Debug tools
- Programmer
- SignalTap
- SignalProbe

M
A

P

QSYS Prime

32



7/11/2017

17

QSYS Example Design

33

Memory Tester

DSP Builder Flow

34



7/11/2017

18

Logic Netlist Example

35

ina

inb

clk

inrega

inregb

ab

clk~clkctrl

outreg
out

combout d

clk

datac

datad

inclk[0]

q

outclk

combout

datain

cell=atom/wysiwyg pin = otermpin = iterm port = I/O

net

36

Launch & Latch Edges

Launch Edge: the edge which “launches” the data from source register

Latch Edge: the edge which “latches” the data at destination register (with respect to the 
launch edge)

36

CLK

REG1

D Q
SET

CLR

REG2

D Q
SET

CLR

Comb.

Logic

CLK

Launch 
Edge

Latch 
Edge

Data ValidDATA



7/11/2017

19

37

Setup & Hold relationships

37

CLK1

CLK2

CLK1

CLK2

0

CLK1

REG1

D Q
SET

CLR

REG2

D Q
SET

CLR

Comb .

Logic

CLK2

T

T/2 -T/2

Launch 
Edge
Hold

Launch 
Edge
Setup

Latch
Edge– Hold relationship           

- - Setup relationship

38

Data Arrival Time

Data Arrival Time = launch edge + Tclk1 + Tco +Tdata

38

CLK

REG1.CLK

Tclk1

Data ValidREG2.D

Tdata

Launch 

Edge

Data ValidREG1.Q

Tco

The time for data to arrive at destination register’s D input

REG1
PRE

D       Q

CLR

REG2
PRE

D       Q

CLR

Comb.

Logic
Tclk1

TCO

Tdata



7/11/2017

20

39

Data Required Time - Setup

Data Required Time = Clock Arrival Time - Tsu - Setup Uncertainty 

39

CLK

REG2.CLK

Tclk2

Latch 

Edge

The minimum time required for the data to get latched into the destination register

Tsu

Data ValidREG2.D

Data must be 
valid here

REG1
PRE

D       Q

CLR

REG2
PRE

D       Q

CLR

Comb.

Logic

Tclk2 Tsu

40

Setup Slack

40

Tclk2

REG2.CLK

The margin by which the setup timing requirement is met.  It ensures launched data arrives in time 

to meet the latching requirement.

Tsu

CLK

REG1.CLK

Tclk1

Data ValidREG2.D

Tdata

Data ValidREG1.Q

Tco

Setup

Slack

Launch 

Edge Latch 

Edge

REG1
PRE

D       Q

CLR

REG2
PRE

D       Q

CLR

Comb.

Logic
Tclk1

TCO

Tdata

Tclk2 Tsu



7/11/2017

21

41

Data Required Time - Hold

Data Required Time = Clock Arrival Time + Th + Hold Uncertainty 

41

CLK

REG2.CLK

Tclk2

Latch 

Edge

The minimum time required for the data to get latched into the destination register

Th

Data must

remain valid

to here

Data ValidREG2.D

REG1
PRE

D       Q

CLR

REG2
PRE

D       Q

CLR

Comb.

Logic

Tclk2 Th

42

Setup & Hold relationships

42

CLK1

CLK2

CLK1

CLK2

0

CLK1

REG1

D Q
SET

CLR

REG2

D Q
SET

CLR

Comb .

Logic

CLK2

T

T/2 -T/2

Launch 
Edge
Hold

Launch 
Edge
Setup

Latch
Edge– Hold relationship           

- - Setup relationship



7/11/2017

22

43

Hold Slack

43

REG2.CLK

Tclk2

The margin by which the hold timing requirement is met.  It ensures latch data is not corrupted by 

data from another launch edge.

Th

CLK

REG1.CLK

Tclk1

Data ValidREG2.D

Tdata

Data ValidREG1.Q

Tco

Hold

Slack

Latch 

Edge
Launch 

Edge (Hold)

REG1
PRE

D       Q

CLR

REG2
PRE

D       Q

CLR

Comb.

Logic
Tclk1

TCO

Tdata

Tclk2 Th

TimeQuest Prime

44



7/11/2017

23

45

Features

▪ Synopsys Design Constraints (SDC) 
support

– Standardized constraint methodology

▪ Easy-to-use interface

– Constraint entry

– Standard reporting

▪ Scripting emphasis

– Presentation focuses on using GUI

TimeQuest Timing Analyzer

Chip Planner

46



7/11/2017

24

47

On-chip Debug Technology

Debug tools communicate with the FPGA via standard JTAG interface

Multiple debug functions can share the JTAG interface simultaneously

▪ Altera’s system-level debugging (SLD) hub technology makes 
this possible

Download 
Cable

FPGA

JTAG
Tap

Controlle
r

Node
2

Node
1

User's 
Design 

(Core Logic)

Node
NSLD

Hub

48

SignalTap Window - Data



7/11/2017

25

Elementary math functions supporting floating point

50

Coverage of ~70 elementary math functions

Patented & published efficient mapping to FPGA hardware

– Polynomial approximation, Horner’s method, truncated multipliers, …

Compliant to OpenCL & IEEE754 accuracy standards

Rounding mode options for fundamental operators

Half- to Double-precision

Basic  Floating Point

FPAdd
FPAddExpert
FPAddN
FPSubExpert
FPAddSub \
FPAddSubExpert
FPFusedAddSub
FPMul
FPMulExpert
FPConstMul
FPAcc
FPSqrt
FPDivSqrt
FPRecipSqrt
FPCbrt
FPDiv
FPInverse
FPFloor
FPCeil
FPRound
FPRint
FPFrac
FPMod
FPDim
FPAbs
FPMin
FPMax
FPMinAbs
FPMaxAbs
FPMinMaxFused
FPMinMaxAbsFused
FPCompare
FPCompareFused

Exp, Log and Power

FPLn
FPLn1px    
FPLog10    
FPLog2     
FPExp
FPExpFPC
FPExpM1    
FPExp2     
FPExp10    
FPPowr

Trig with argument reduction

FPSinX
FPCosX
FPSinCosX
FPTanX
FPCotX

Inverse trigonometric functions

FPArcsinX\
FPArcsinPi
FPArccosX
FPArccosPi
FPArctanX
FPArctanPi
FPArctan2

Trigonometrics of pi*x

FPSinPiX
FPCosPiX
FPTanPiX
FPCotPiX

Trigonometrics misc

FPHypot
FPRangeReduction

Conversion

FXPToFP
FPToFXP
FPToFXPExpert
FPToFXPFused
FPToFP

Macro Operators

FPFusedHorner
FPFusedHornerExpert
FPFusedHornerMulti
FPFusedMultiFunction



7/11/2017

26

Intel FPGA IP ecosystem

51

Intel FPGA IP Catalogue

52

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/sg/product-catalog.pdf

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/sg/product-catalog.pdf


7/11/2017

27

Board Partners

53



7/11/2017

28

55

So, Why HLS?

Debugging software is much faster than hardware

Many functions are easier to specify in software than RTL

Simulation of RTL takes thousands times longer than software

– Creating test benches takes a long time

– Updates to code requires changes to testbench to verify

– Simulation of PCIe at 1fs for 500ms = Enough said!

Design Exploration is much easier and faster in software

Transistors

Gates

Logic 
Blocks

Mapping a Simple Program to an FPGA

56

R0  Load Mem[100]
R1  Load Mem[101]
R2  Load #42
R2 Mul R1, R2
R0  Add R2, R0
Store R0 Mem[100]

High-level code

Mem[100] += 42 * Mem[101]

CPU instructions

C/C++ instruction



7/11/2017

29

B

A
A

ALU

First let’s take a look at execution on a simple CPU

57

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData

Fixed and general 
architecture:

- General “cover-all-cases” data-paths
- Fixed data-widths
- Fixed operations

B

A

ALU

Looking at a Single Instruction

58

Very inefficient use of hardware!

Op

Val

Instruction

Fetch

Registers

Aaddr

Baddr

Caddr

PC Load Store
LdAddr StAddr

CWriteEnable

C

Op

LdData

StData

Op

CData



7/11/2017

30

Sequential Architecture vs. Dataflow Architecture

59

Sequential CPU Architecture FPGA Dataflow Architecture

A

AA

AA

A

load load

store

42 R

e

s

o

u

r

c

e

s

Time

Custom Data-Path on the FPGA Matches Your Algorithm!

60

Build exactly what you need:

Operations

Data widths

Memory size & configuration

Efficiency:

Throughput / Latency / Power

load load

store

42

High-level code

Mem[100] += 42 * Mem[101]

Custom data-path



7/11/2017

31

Different Solutions for Different Users

61

High Level Design

Compiler

HDL Code, 

Qsys

(Schematic)

Altera SDK For 

OpenCL

(SW)

Intel® HLS 

Compiler

(IP)

DSP Builder

(Model)

For Different
Users

Key 
Technology

Different  Objectives and Requirements

Delivery of 
Different

Front-Ends

“Hardware”

Designer

“Algorithm” 

Designer

“Embedded”

Designer
“Software”

Designer

HDL

Intel® FPGA 

SDK 

For OpenCL

(SW)

“Hardware”

Designer

“Algorithm” 

Designer

“Embedded”

Designer
“Software”

Designer

Different Solutions for Different Users

62

High Level Design

Compiler

HDL Code, 

Qsys

(Schematic)

Altera SDK For 

OpenCL

(SW)

Intel® HLS 

Compiler

(IP)

DSP Builder

(Model)

For Different
Users

Key 
Technology

Different  Objectives and Requirements

Delivery of 
Different

Front-Ends

“Hardware”

Designer

“Algorithm” 

Designer

“Embedded”

Designer
“Software”

Designer

HDL

Intel FPGA 

SDK 

For OpenCL

(SW)

“Hardware”

Designer

“Algorithm” 

Designer

“Embedded”

Designer
“Software”

Designer

Intel® FPGA 

SDK 

For OpenCL

(SW)



7/11/2017

32

What is OpenCL?

74

A software programming model for software 
engineers and a software methodology for system 
architects

– First industry standard for heterogeneous 
computing

Provides increased performance with hardware 
acceleration

– Low Level Programming language

– C99

Open, royalty-free, standard
– Created by Apple
– Managed by Khronos Group
– Intel active member
– Conformant to the standard

Host Accelerator

C/C++ 

API

OpenCL

C

Host Accelerator

C/C++ 

API

OpenCL

C

http://www.khronos.org/
http://en.wikipedia.org/wiki/File:OpenCL_Logo.png
http://www.khronos.org/
http://altera.com/
http://www.google.com/
http://www.fujitsu.com/
http://www.ibm.com/
http://www.amd.com/
http://www.arm.com/
http://www.intel.com/
http://www.nvidia.com/
http://www.ti.com/
http://www.samsung.com/
http://www.ericsson.com/mobileplatforms


7/11/2017

33

OpenCL Use Model: Abstracting the FPGA away

75

Host Code

main() {
read_data( … );
manipulate( … );
clEnqueueWriteBuffer( … );
clEnqueueNDRange(…,sum,…);
clEnqueueReadBuffer( … );
display_result( … );

}

Accelerator plugged in the server

__kernel void sum
(__global float *a,
__global float *b,
__global float *y)

{
int gid = get_global_id(0);
y[gid] = a[gid] + b[gid];

}

OpenCL Accelerator Code

Standard
gcc Compiler

EXE

Altera Offline
Compiler

AOCX

Traditional OpenCL Host Program

76

Pure software written in standard C/C++ languages

Communicates with the accelerator devices via an API which abstracts the 
communication between the host processor and the kernels

main()
{

read_data_from_file( … );
manipulate_data( … );

clEnqueueWriteBuffer( … );
clEnqueueNDRange(…, sum, …);
clEnqueueReadBuffer( … );

display_result ( … );
}

Copy data from Host to 
FPGA

Tell the FPGA to run a 
particular kernel

Copy data from FPGA to 
Host



7/11/2017

34

Kernel: Data-parallel function

▪ Defines many parallel threads

– Explicitly or inferred

▪ Keyword extensions to specify parallelism and 
memory hierarchy 

Executed by an OpenCL device

– CPU, GPU, FPGA, DSP

Code portable NOT performance 
portable

– Between FPGAs it is!

77

OpenCL Kernels
__kernel void sum(

__global float *a,
__global float *b,
__global float *answer)

{
int xid = get_global_id(0);
result[xid] = a[xid] + b[xid];

}

float *a =

float *b =

float *result =

0 1 2 3 4 5 6 7

7 6 5 4 3 2 1 0

7 7 7 7 7 7 7 7

__kernel void sum( … );

Software Programmer’s View of an OpenCL Platform

78

Custom Accelerator on FPGA

Compute Units

Local memory (small, fast, shallow, random)

Global Memory (large, fast, deep, bursting)

Host

OpenCL

API
Custom load/store 

units and interconnect

Custom local memory 
architecture: 

banking and arbitration

Custom compute units
that run the kernels

Host talks to global memory through OpenCL API routines



7/11/2017

35

79

Board Support Package

OpenCL Domain

PCIe gen3x8 Host Interface

In
te

rc
o

n
n

e
ct

DDR3 Memory Interface

DDR3 Memory Interface

Kernel
IP

Kernel 
IP

DDR

DDR

Host

10Gb MAC/UOE Data Interface

10Gb MAC/UOE Data Interface

10G Network

QDRII Memory Interface

QDRII Memory Interface

JESD204

XCVRs

QDR

QDR

A/D

SDI

Prebuilt
BSP with standard HDL

Tools by FPGA 
Developer

Built with 
Altera 

OpenCL 
Compiler

IO Infrastructure

Guaranteed Timing Closure

80



7/11/2017

36

Start with OpenCL ready platforms 1/2

81

HPC Applications Network Applications

82

Intel Arria 10 GX FPGA  - 10AX115N3F40E2SG

– Up to 1150K logic elements available

– Up to 53 Mb of embedded memory 

– Up to 3,300 18x19 variable-precision multipliers 

PCIe x8 interface supporting Gen1, Gen2, or Gen3

Dual QSFP cages for 2x 40GbE or 8x 10GbE

Up to 32 GBytes of DDR4 SDRAM with ECC (x72) 

BMC for Intelligent Platform Management

Precision clock and timing options

Utility I/O: USB 2.0

Bittware Arria 10 Gx Specifications



7/11/2017

37

Development Flow for FPGA

83

foo.cl Kernel 
Compiler

Board Support Package

System 
Integrator

host.c

How Does i++ Compiler for HLS Differ From OpenCL?

84

foo.cl IP 
Optimizer

Board Support Package

System 
Integrator

host.c

Towards 
C++

Customize 
architecture 

Visualize

Simulate

Customize 
interfaces



7/11/2017

38

Multi-Step AOC Compilation

85

Modify kernel.cl

x86 Emulator (sec)

Optimization Report (sec)

Profiler (hours)

Functional Bugs?

Stall-free pipeline? 
Memory coalesced?

Hardware 
performance met?

Done !

OpenCL Compiler Flow

86

kernel.cl
host.c

CLANG 
front end

System 
Descriptio

n

C 
compiler

Altera
Runtim

e
Library

program.exe

Optimizer

Unoptimized
LLVM IR

Optimized 
LLVM IR

RTL 
generator

Verilog
PCIe

DDR*
OpenCL
Platform

CLANG 
front end

Unoptimized
LLVM IR

Front End
Parses OpenCL extensions 

and intrinsics – produces 

LLVM IR



7/11/2017

39

OpenCL Compiler Flow

87

kernel.cl
host.c

CLANG 
front end

C 
compiler

Altera
Runtim

e
Library

program.exe

Optimizer

Unoptimized
LLVM IR

Optimized 
LLVM IR

PCIe

DDR*
OpenCL
Platform

Optimizer

Optimized 
LLVM IR

Middle End
~150 compiler passes such 

as loop fusion, auto 

vectorization, and branch 

elimination leading to 

more efficient HW

RTL 
generator

Verilog

OpenCL Compiler Flow

88

kernel.cl
host.c

CLANG 
front end

C 
compiler

Altera
Runtim

e
Library

program.exe

Optimizer

Unoptimized
LLVM IR

Optimized 
LLVM IR

RTL 
generator

Verilog
PCIe

DDR*
QSYS

QuartusRTL 
generator

Verilog

Back End
•Instantiate Verilog IP for 

each operation in the 

intermediate representation

•Create control flow 

circuitry to handle loops, 

memory stalls and 

branching

•Traditional optimizations 

such as scheduling and 

resource sharing



7/11/2017

40

Architectural Viewer (Stall Points)

90

Selected store

Local memory is well-configured into multiple 

banks. All loads and all stores can be 

serviced every clock cycle.

The banking is also described in words in 

Area Report but not how each load/store 

connected to each bank.

Local memory is 2D [1024][4]. 

Compiler can prove, by access 

analysis, that accesses to each 

lower dimension are disjoint.

Compile-time known address.

Area Report

91

Shows estimated resource usage for each line of code

Provides details explaining reason for inefficiencies

Information on how to improve your design 

Enhanced accuracy of estimates and relationship to code
1 #define NUM_READS    8
2 #define NUM_WRITES   8
3 #define NUM_BARRIERS 2
4 
5 __attribute((reqd_work_group_size(1024,1,1)))
6 kernel void big_lmem (global int* restrict in,
7                       global int* restrict out) {
8 
9   local int lmem[1024];

10   int gi = get_global_id(0);
11   int gs = get_global_size(0);
12   int li = get_local_id(0);
13   int res = in[gi];
14   #pragma unroll 
15   for (int i=0; i<NUM_WRITES; i++) {
16     lmem[li - i] = res;
17     res >>= 1;
18   }
19   barrier(CLK_GLOBAL_MEM_FENCE);
20   res = 0;
21   #pragma unroll 
22   for (int i=0; i < NUM_READS; i++) {
23     res ^= lmem[li - i];
24   }
25   out[gi] = res;
26 }



7/11/2017

41

Dynamic Profiler

92

Intel FPGA SDK for OpenCL enables users to get runtime information about their 
kernel performance 

Bottlenecks, bandwidth, saturation, pipeline occupancy

Execution TimesPerformance Stats

Key Optimization Methodology is Still Data Localization

93

10 TFLOP floating point performance in Startix 10

– Use every DSP, every clock cycle compute spatially

>8 TB/s memory bandwidth: keep state on chip!

– Exceeds available external bandwidth by orders of 
magnitude

– Random access, low latency (2 clks)

– Place all data in on-chip memory compute 
temporally

Avoid costly data movement

– Highest performance/W of Intel’s programmable 
offerings

X

+

X

+

X

+

X

+ M20K

M20K

M20K

M20K

Fine-grained & low latency 
between compute and memory 



7/11/2017

42

Harnessing Pipeline Parallelism

Mapping Multithreaded Kernels to FPGAs

95



7/11/2017

43

Example Datapath for Vector Add

96

On each cycle the portions of the 
datapath are processing different 
threads

While thread 2 is being loaded, thread 1 
is being added, and thread 0 is being 
stored

Load Load

Store

0 1 2 3 4 5 6 7

8 work items for vector add example

+

Work item IDs

Example Datapath for Vector Add

97

On each cycle the portions of the 
datapath are processing different 
threads

While thread 2 is being loaded, thread 1 
is being added, and thread 0 is being 
stored

Load Load

Store

0
1 2 3 4 5 6 7

8 work items for vector add example

+

Work item IDs



7/11/2017

44

Example Datapath for Vector Add

98

On each cycle the portions of the 
datapath are processing different 
threads

While thread 2 is being loaded, thread 1 
is being added, and thread 0 is being 
stored

Load Load

Store

0

1
2 3 4 5 6 7

8 work items for vector add example

+

Work item IDs

Example Datapath for Vector Add

99

On each cycle the portions of the 
datapath are processing different 
threads

While thread 2 is being loaded, thread 1 
is being added, and thread 0 is being 
stored

Load Load

Store

1

2

3 4 5 6 7

8 work items for vector add example

+
0

Work item IDs



7/11/2017

45

Example Datapath for Vector Add

100

On each cycle the portions of the 
datapath are processing different 
threads

While thread 2 is being loaded, thread 1 
is being added, and thread 0 is being 
stored

Load Load

Store

2

3
4 5 6 7

8 work items for vector add example

+

0

1

Silicon used efficiently at steady-state

Work item IDs

Execution of Threads on FPGA

101

Better method involves taking advantage of pipeline parallelism

▪ Throughput = 1 thread per cycle

t2

kernel void

add(

global int* a, global int* b,

global int* c 

) { 

...

uint gid = get_global_id(0);

c[gid] = a[gid]+b[gid];

}

t0

t1
t2

t3

t4

t5

C
lo

ck
 C

y
cl

e
s

101



7/11/2017

46

102



7/11/2017

47

Goals of OpenCL Optimization

104

Keep as much FPGA resources busy as possible doing useful stuff!

▪ Increase the number of parallel operations (Reduce Taf)

▪ Reduce communication latency of the accelerated system (Reduce Tc)

▪ Increase efficiency of operations (Reduce Taf)

▪ Minimize overhead (Reduce Th)

TS Th Tf

TAS Th Tc Taf

System Acceleration As

Unaccelerated System

Accelerated System

Optimization technics

105

Loop Unrolling

Vectorization

Kernel Compute duplication

Task Kernel: Single Work-Item Kernels

Channels

NDRange Execution

Memory Optimizations: Global, Local & Private

Floating Point Optimizations



7/11/2017

48

Loop Unrolling

107

By default, loops can hinder performance 

Loop unrolling replicate hardware to execute multiple loop iterations at once

Increase performance by decreasing number of iteration through loop

▪ Structure of the compute units built will be significantly altered

▪ More resource consumption

▪ More local memory ports may be required 

Simple loops will be unrolled automatically

▪ AOC will generate a warning

Can be used in both single-work item and NDRange kernels



7/11/2017

49

unroll kernel pragma

108

#pragma unroll <N> instructs AOC to attempt to unroll a loop <N> times

▪ Without <N>, AOC will attempt to unroll the loop fully

▪ Warning issued if AOC unable to unroll

Control the amount of hardware used for loops

▪ Trading off between performance and area

#pragma unroll 2

for (size_t k=0; k<4; k++)

{

mac += data_in[(gid*4)+k] * coeff[k];

}

Loop Unrolling Example

109

Sum of 4 values for every work-item

Store a new result every 4 iterations

Store every 
4 iterations

accum = 0;

for (size_t i=0; i<4; i++)

{

accum += data_in[(gid*4)+i];

}

sum_out[gid] = accum;

For Begin For End StoreLoad

accum reg

+



7/11/2017

50

110

Unroll every iteration of the loop

Store a new result every clock cycle

Loop Unrolling Example: Fully Unrolled

Load
+

Store
Load

Load

Load

+

+
Store 
every 
cycle

accum = 0;

#pragma unroll

for (size_t i=0; i<4; i++)

{

accum += data_in[(gid*4)+i];

}

sum_out[gid] = accum;

Additional Optimizations Shown:
1. accum register removed
2. Order of operation optimization done if allowed
3. Operators removed if not needed

• There would be 4 adders created if initial value of accum is not 0.

Loop Unrolling in the Optimization Report

111

Loop unrolling reported in the <kernel file>.log

Reported information

▪ Loop location

▪ Nesting relationship

▪ Requested unroll factor

▪ Achieved unroll factor



7/11/2017

51

Kernel Vectorization

113

Widen the pipeline to achieve higher throughput

▪ Allow multiple work-items from the same workgroup to execute in Single Instruction 
Multiple Data (SIMD) fashion

Translate scalar operations into SIMD operations

▪ E.g. multiplication or addition

▪ Can be done manually or automatically

Load
a[i]

Load
b[i]

Store
c[i]

a[i]+b[i]

Load
a[i]…a[i+n]

Load
b[i]..b[i+n]

Store
c[i]…c[i+n]

a[i]+b[i] a[i+n]+b[i+n]…

Normal Execution SIMD Execution



7/11/2017

52

Vectorize Kernel Code Manually

114

Replicate operations in the kernel manually

Must also adjust NDRange in host application

__kernel void mykernel (…)

{

size_t gid = get_global_id(0);

result[gid] = in_a[gid] + in_b[gid];

}

__kernel void mykernel (…)

{

size_t gid = get_global_id(0);

result[gid*4+0] = a[gid*4+0] + b[gid*4+0];

result[gid*4+1] = a[gid*4+1] + b[gid*4+1];

result[gid*4+2] = a[gid*4+2] + b[gid*4+2];

result[gid*4+3] = a[gid*4+3] + b[gid*4+3];

}

Original
Kernel

Manually
Vectorized
Kernel

Automatic Kernel Vectorization

115

Use attribute to enable automatic kernel compute unit vectorization

▪ Memory accesses automatically coalesced

▪ No need to adjust NDRange in host application

num_simd_work_items attribute

▪ Specify the number of work-items within a workgroup to be executed in a SIMD manner

– Hardware operators automatically vectorized

▪ Vectorization only takes affect in the X dimension of the workgroup

▪ Must use with reqd_work_group_size attribute

– reqd_work_group_size must be evenly divisible by num_simd_work_items in the X 
dimension 

▪ Factor of 2,4,8,16 __attribute__((num_simd_work_items(4)))

__attribute__((reqd_work_group_size(64,1,1)))

__kernel void mykernel (…)

{…}



7/11/2017

53

Default Compute Units

117

Only one compute unit per kernel created by default

Workgroups distributed to compute unit in sequence 

117

Host

DeviceHost Memory

Global 

Memory

In
te

rf
a

c
e

CU
W1,K1,R1

K1W1 R1

Elapsed Time

PCIe
DDR

QDR

Load Load

Store



7/11/2017

54

Multiple Compute Units

118

Use num_compute_unit attribute to specify number of kernel compute units to

▪ Entire compute unit including all local memory, control logic, and operators replicated

Workgroups from the same NDRange kernel launch are distributed to available 
compute units and processed in parallel

▪ Need at least three times as workgroups as compute units to effectively utilize all hardware

PCIe
DDR

QDR

118

Load Load

Store

Load Load

Store

Load Load

Store

Host

DeviceHost Memory

Global 

Memory

In
te

rf
a

c
e

CU

CU

CU

W1,K1,R1

K1W1 R1

Elapsed Time

__attribute__((num_compute_units(3))

)

__kernel void …

Example: Combining Replication and Vectorization

119

Resource estimates of 16 SIMD lanes indicate “no fit”

Resource estimates of 8 SIMD lanes suggest 12 lanes may fit

▪ Automatic vectorization only supports 2, 4, 8 and 16 lane configurations

Generate 12 lanes by combining num_simd_work_items and num_compute_units

__attribute__((num_simd_work_items(4)))

__attribute__((num_compute_units(3)))

__attribute__((reqd_work_group_size(8,8,1)))

__kernel void mykernel (…)

{ …

Global Memory

X4 SIMD Kernel CU1 X4 SIMD Kernel CU2

Loads Loads
Stores Stores

X4 SIMD Kernel CU3

Loads
Stores



7/11/2017

55

Kernel Attributes in the Optimization Report

120

Effects of all kernel attributes are reported in the <kernel file>.log file



7/11/2017

56

Single Work-Item Execution

122

Launching kernels with NDRange of (1,1,1)

▪ A kernel executed on a compute unit consisting of one work-item 

▪ Defined as a Task in OpenCL

Why?

▪ Data parallel (multiple work-items) execution may not be suitable for certain situations

– Difficulties partitioning data among parallel works-items

– Dependency across work-items

– Data not available prior to kernel execution

– Data not easily divided into workgroups

▪ Sequential programming model of tasks more similar to C programming

– Certain usage scenario more suited for sequential programming model

– Easier to port

Tasks and Loop-pipelining

Allow users to express programs as a single-thread kernel

Compiler will infer parallel pipelined execution across loop iterations

▪ Pipeline parallelism still leveraged to efficiently execute loops in Altera’s OpenCL solution

▪ Dependencies resolved by the compiler

▪ Values transferred between loop iterations with FPGA resources

– No need to buffer up data

– Easy and cheap to share data through feedbacks in the pipeline

Load

Store

+
for (int i=1; i < n; i++) {

c[i] = c[i-1] + b[i];
}

i=0

i=1

i=2



7/11/2017

57

Loop Pipelining

124

AOC will pipeline each iteration of the loop for acceleration

▪ Analyze any dependencies between iterations

▪ Schedule these operations

▪ Launch the next iteration as soon as possible

float array[M];

for (int i=0; i < n; i++)

{

for (int j=0; j < M-1; j++)

array[j] = array[j+1];

array[M-1] = a[i];

for (int j=0; j < M; j++)

answer[i] += array[j] * coefs[j];

}

At this point, launch 
the next iteration

Shift Register array
(Dependency for next iteration)

Reduction on array
(Not a dependency)

125

No Loop Pipelining With Loop Pipelining

Loop Pipelining Example

i0

i1

i2

C
lo

ck
 C

y
cl

e
s

No Overlap of Iterations!
Finishes Faster because Iterations

Are Overlapped

i0

i1
i2

i3

i4

i5

C
lo

ck
 C

y
cl

e
s

Looks like multi-
threaded
execution!



7/11/2017

58

126

Parallel Threads Loop Pipelining

Parallel Threads vs Loop Pipelining

Parallel threads launch 1 
thread per clock cycle in 
pipelined fashion

Loop 
dependencies may 
not be resolved in 
1 clock cycle

t0

t1
t2

t3

t4

t5

i0

i1
i2

i3

i4

i5

Loop Pipelining enables Pipeline Parallelism AND the communication of state 
information between iterations.

▪ If dependency can be resolved in 1 clock cycle, then the resulting computational throughput is 
the same



7/11/2017

59

Communication: Channels/Pipes

128

Key for systolic array architectures

Enables much lower latency data movement through data processing paths (result reuse)

– No need to move data back and forth to external memory or cache

Provide unidirectional, FIFO-like communication into or out of kernels, or into or out of FPGA

– Pipes are built on top of channels and only support kernel to kernel data movement

Arrows indicate 
dataflow direction

FIFOWrite Read

Kernel 1 Kernel 2

Pipe

FPGA

Kernel

129

Traditional Data Movement Without Channels

PCIe

DMA DMA

Memory

Controller

HOST

DDR

Kernel

System

Memory



7/11/2017

60

130

Data Movement Using Channels

FPGA

Kernel

PCIe

DMA DMA

Memory

Controller

HOST

DDR

KernelFIFO

FIFO FIFO

Data In Data Out

System

Memory

Systolic Array of Compute Units

131

Replicate kernel hardware with num_compute_units(X,Y,Z) attribute

▪ Creates X*Y*Z copies of kernel pipeline

– Increases throughput

– When applied to NDRange kernels, these copies used to execute multiple workgroups 
in parallel

– More on this in the Optimizing NDRange kernels section

– Consumes X*Y*Z times more resources for that kernel compute unit

With single work-item kernels, AOC allows customization of kernel compute units 
using the get_compute_id() function

▪ Create compute ID dependent logic

CU CU

CU CU

CU CU

CU CU



7/11/2017

61

Example with num_compute_units

132

Using compute ID to determine channel usage

channel float4 ch_PE_row[3][4];

channel float4 ch_PE_col[4][3];

channel float4 ch_PE_row_side[4];

channel float4 ch_PE_col_side[4];

__attribute__((autorun))

__attribute__((max_global_work_dim(0)))

__attribute__((num_compute_units(4,4)))

kernel void PE() {

float4 a,b;

if (get_compute_id(0)==0) //First PE of row

a = read_channel(ch_PE_col_side[col]);

else

a = read_channel(ch_PE_col[row-1][col]);

if (get_compute_id(1)==0)

…

}

Other Topologies Possible in FPGA Too

133

PE PE

PE PE

Ring

Data

sequencer

DDR4

PE PE PEPE
Data

sequencer

Linear Pipeline / Daisy chain

Data

sequencer

DDR4 DDR4



7/11/2017

62

Use Case: Matrix Multiplication

134

Performance: ~1 TFLOPs

Global Memory & Local Memory



7/11/2017

63

OpenCL Global Memory

136

Global Memory Overview

▪ Programmers view of global memory in OpenCL

▪ Compiler view of global memory

Global Memory Architecture

▪ Load-Store Units

▪ LSU Arbitration

▪ Const Cache

Optimizations

Global Memory in OpenCL

137

‘global’ address space 

▪ Used to share data between host and device

▪ Shared between workgroups

Generally allocated on host as cl_mem object

▪ Created with clCreateBuffer

▪ Data transferred with clRead/clWrite Buffer

▪ cl_mem object assigned to global pointer argument in kernel

__kernel void Add(__global float* a,

__global float* b,

__global float* c)

{

int i = get_global_id(0);

c[i] = a[i] + b[i];

}



7/11/2017

64

138

OpenCL BSP Global Memory

FPGA

Kernel 

Pipeline

Kernel 

Pipeline

PCIe

D
D

RProcessor

External

Memory 

Controller

& PHY

On-Chip 

Memory

Global Memory Interconnect

External

Memory 

Controller

& PHY

On-Chip 

Memory

Local Memory InterconnectLocal Memory Interconnect

Compiler’s View of Global Memory

139

Agnostic to the memory technology itself

▪ DDR, QDR, HMC, QPI

Only a few pertinent parameters (provided by BSP)

▪ How many interfaces

▪ Width of the bus

▪ Burst size (affinity for linear access)

▪ Latency

▪ Bandwidth

Exposed as Avalon Memory Mapped Slave

▪ Compiler builds datapath and interconnect to communicate to fixed IP 

▪ BSP developer can create BSP variants for different memory configurations



7/11/2017

65

OpenCL Global Memory

140

Global Memory Overview

▪ Programmers view of global memory in OpenCL

▪ Compiler view of global memory

Global Memory Architecture

▪ Load-Store Units

▪ LSU Arbitration

▪ Const Cache

Optimizations

Compiler Generated Hardware

141

BSP

foo.cl
global int* x;

…

int y=x[k];

AOC Compiler

Global 

Memory

Load Unit

Arbitration

Pipeline



7/11/2017

66

Global Load/Store Unit (LSU)

142

Width Adaptation

▪ User data (32-bit int) to memory word 
(512-bit DRAM word)

▪ Coalesces to avoid wasted bandwidth

Burst coalescing

▪ Coalesces consecutive memory 
transactions into large burst 
transaction

Global 

Memory

Load Unit

Arbitration

Pipeline

LSU Types (1)

143

Pipelined

▪ Used for local memory

Simple

▪ Passes transactions to interconnect from pipeline

▪ Used for loads/stores used very infrequently

Burst-Coalesced

▪ Most common global memory LSU

▪ Specialized LSU to groups loads/stores into bursts

▪ Load LSU can cache/re-use data

– Private caching is applied heuristically

Streaming

▪ Simplified LSU used if compiler can determine access pattern is completely linear



7/11/2017

67

LSU Types (2)

144

Semi-streaming

▪ Load LSU Specialized for nearly linear accesses

▪ Instantiated heuristically

Burst-non-aligned

▪ Wrapper around Burst-coalesced LSU, instantiated if access alignment may not be aligned 
to LSU width

▪ Tries to minimize overhead of non-aligned accesses by coalescing

Wide LSU

▪ Wrapper around other LSU types, converts wider than global memory accesses into global 
memory sized accesses

▪ More area efficient than multiple memory width LSUs

Arbitration

145

Arbitrate to physical interfaces

▪ Tree interconnect (high bandwidth)

▪ Ring interconnect (high fmax)

– Increase reliance on large bursts

▪ Arbitration type chosen base on # of LSUs

Distribute (load balance) across physical interfaces

Global 

Memory

Load Unit

Arbitration

Pipeline



7/11/2017

68

Const Cache

146

Constant buffer resides in global memory but accessed via on-chip cache shared 
by all work-groups

▪ Constant cache optimized for high cache hit performance

Use for read-only data that all work-groups access

▪ E.g. high-bandwidth table lookups

Constant cache default size is 16kB

▪ Uses on-chip RAM blocks that are shared with local memory

Complete Picture

147

Load Unit Load Unit

Coalesce

Load Unit

Cache
stream

decoupled

Constant 

Load Unit

Constant 

Cache

Arbitration

Constant 

Load Unit

low BW

high BW

DDR4

Pipeline

Global 

Memory



7/11/2017

69

OpenCL Global Memory

148

Global Memory Overview

▪ Programmers view of global memory in OpenCL

▪ Compiler view of global memory

Global Memory Architecture

▪ Load-Store Units

▪ LSU Arbitration

▪ Const Cache

Optimizations

Contiguous Memory Accesses

149

Interleaved memory suitable for contiguous access

▪ Sequential accesses to global memory are the ideal access pattern to increase memory 
efficiency

AOC will analyze access pattern of load and stores

Looks for sequential load and store operations for the entire kernel and directs 
kernel to access consecutive locations in global memory

Leads to increased access speeds and reduced hardware resource needs



7/11/2017

70

c[0]  c[1]  c[2]  c[3]  …  c[N-2]  c[N-1]

b[N-1] b[N-2] … b[3] b[2] b[1] b[0]

a[N-1] a[N-2] … a[3] a[2] a[1] a[0]

Array Indexing and Contiguous Memory Accesses

150

Basing array index on the work-item global ID leads to efficient contiguous load 
and store operations

▪ Data sent to and received from the kernel pipeline as needed

▪ Computation and memory accesses can happen simultaneously

__kernel void mykernel (…)  {

size_t gid = get_global_id(0);

c[gid] = a[gid] + b[gid];

}

Global

Memory

Kernel

Pipeline

Consecutive 

Load

Consecutive 

Load

Consecutive 

Store

Contiguous Memory Accesses (Tasks)

151

For Task kernels, memory should be indexed with an increasing loop counter for 
contiguous accesses

__kernel void mykernel (…)  {

for(int i = 0; i<BUFFER_SIZE; i++)

{

c[i] = a[i] + b[i];

}

}



7/11/2017

71

Ensure 4-Byte Alignment for Data Structures

152

Struct alignments smaller than 4 bytes result in larger and slower hardware

Force 4-byte alignment

typedef struct {

char r,g,b,alpha;

} Pixel;

typedef struct {

char r,g,b,alpha;

} Pixel_s;

typedef union {

Pixel_s p;

int not_used;

} Pixel; 

1-byte aligned 
struct

Create a union of the structure 
and an integer

Use aligned attribute with 
GCC or in the kernel

or

typedef struct {

char r,g,b,alpha;

} __attribute__((aligned(4))) Pixel;

Using __constant Buffers

153

Constant cache default size is 16kB

▪ Uses on-chip RAM blocks that are shared with local memory

Manually specify cache size with AOC option

▪ Specify in bytes, AOC will round up to closest power of 2

▪ Have no effect if no kernels use __constant address space

Constants suffer huge penalties for cache misses

▪ Use __global const instead if constant argument can’t fit in the cache

aoc --const-cache-bytes 32768 mykernel.cl



7/11/2017

72

Global Memory Banking Optimizations

155

Address space can be partitioned between banks or finely interleaved

Default: Configures global memory as burst-interleaved

▪ Best for sequential traffic

▪ Best for load balancing between memory banks

Burst-interleaving granularity determined by board vendor

Manually Partitioned Global Memory

156

Turn off interleaving and assign data manually into memory banks

▪ Control memory bandwidth across a group of buffers

Advantages

▪ Better performance when accessing multiple pointers assigned to multiple banks

▪ Leads to more deterministic behavior

– Designer knows the access pattern

In majority of use cases, manually partition of global memory leads to improved 
performance



7/11/2017

73

Manual Partitioning Mechanism

157

aoc --sw-dimm-partition <kernel file>.cl

▪ Configure memory banks as non-interleaved address spaces

Use CL_MEM_BANK flags to allocate memory buffer to one of the banks

▪ Allocate each buffer to a single memory bank only

clCreateBuffer(context, CL_MEM_BANK_2_ALTERA |

CL_MEM_READ_WRITE, size, 0, 0);

CL_MEM_BANK_1_ALTERA Allocates to lowest available memory region

CL_MEM_BANK_2_ALTERA Allocates to the second memory bank

CL_MEM_BANK_n_ALTERA Allocates to the nth bank, as long as the board supports it

Avoiding False Memory Dependencies

158

Avoid using pointers that alias other pointers

▪ Only one pointer variable is used to access the contents

Use the restrict keyword whenever possible

▪ Specify to the compiler no aliasing for a pointer

▪ Prevents AOC from creating memory dependencies between non-conflicting load and 
store operations

▪ May cause functional errors if used with pointers that aliases other pointers

__kernel void my_kernel ( __global int * restrict A,

__global int * restrict B)

{

…

}



7/11/2017

74

Heterogeneous Memory

159

Some boards offer more than one type of global memory

▪ Eg. DDR and QDR

▪ One memory will be used by default

Memory location can be assigned per kernel argument

▪ __attribute((buffer_location(“MEMORY_NAME")))

Host will move memory to correct memory type upon kernel invocation

__kernel void foobar (

__global uint *src,

__global uint *dst,

__global __attribute((buffer_location("QDR"))) char* g_tables)

{ …



7/11/2017

75

Floating-Point Optimizations

161

Apply to float and double data types

AOC has the ability to create more efficient hardware for floating-point operations

Optimizations will cause small differences in floating-point results

▪ Not IEEE Standard for Floating-Point Arithmetic (IEEE 754-2008) compliant

AOC floating-point optimizations

▪ Needs to be manually enabled

▪ Tree Balancing

▪ Reducing Rounding Operations

Other optimizations

▪ Floating-point vs. fixed-point representations

▪ Use a device with hard floating point

Arithmetic Order of Operation Rules

162

Strict order of operation rules apply in OpenCL

By default, AOC honors those rules

▪ May lead to long, unbalanced, slower, less-efficient floating-point operations

Example Result = (((A * B) + C) + (D * E)) + (F * G)

x + + +

x x

Long Vine of Operations



7/11/2017

76

Tree Balancing

163

Allow AOC to reorder arithmetic operations to convert into a tree pipeline 
structure

▪ Possibly affects the precision, not consistent with IEEE 754

Enable AOC tree balancing with –fp-relaxed option

▪ Design needs to tolerate the small differences in floating-point results

Same Operation, Balanced Tree Implementation

x

+
+x

x
+

Result = (((A * B) + C) + (D * E)) + (F * G)

aoc --fp-relaxed <kernel_file>.cl

Rounding Operations

164

For a series of floating-point operations, IEEE 754 require multiple rounding 
operation

Rounding can require significant amount of hardware resources

Fused floating-point operation

▪ Perform only one round at the end of the tree of the floating-point operations

▪ Leads to more accurate results

▪ Other processor architectures support certain fused instructions such as fused multiply and 
accumulate (FMAC)

▪ AOC can fuse any combination of floating-point operators



7/11/2017

77

Reducing Rounding Operations

165

AOC will not reduce rounding operations by default

Enable AOC rounding reduction with --fpc option

▪ Not IEEE 754 compliant

▪ Use when program can tolerate these differences in floating-point results

aoc --fpc <kernel_file>.cl

1. Removes floating-point rounding operations whenever possible
Round floating-point operation only once at the end of the tree of operations

Applies to *, +, and -

2. Carry additional mantissa bits to maintain precision
Carries additional bits through calculations, removes them at the end of the tree of operations

3. Changes rounding mode to round toward zero

Floating-Point vs. Fixed-Point Representation

166

Fixed-point implementation always use less logic compared to floating-point 
representation

▪ Save hardware by converting operations to fixed-point

No variable width fixed-point representation in OpenCL

▪ Use char (8-bit), short (16-bit), int (32-bit), or long (64-bit)

If data resolution required is not one of the default supported ones (8, 16, 32, or 
64), use appropriate masking operations to save hardware

▪ Saving are relatively small but can be significant if applied across a large design



7/11/2017

78

Fixed-Point Example

167

17-bit fixed-point data resolution needed

▪ Use 32-bit data type to store the value

▪ Avoid generating hardware for the upper 15 bits by using static bit masks

▪ Result: 17 bit addition implemented instead of 32-bit addition

__kernel fixed_point_add(__global const unsigned int * restrict a,

__global const unsigned int * restrict b,

__global unsigned int * restrict result)

{

size_t gid = get_global_id(0);

unsigned int temp;

result[gid] = 0x3_FFFF & ((0x1_FFFF & a[gid]) + (0x1_FFFF & b[gid]));

}

32-bit data types

Mask away upper 15 bits of inputsMask away upper 14 bits of results

Want to learn more?

Developer Zone

– OpenCL online demos

– OpenCL design examples

– Application Developer Partners

White papers, Publications and 
Optimization Tips for OpenCL

Instructor-Led training

– Parallel Computing with OpenCL Workshop by 
Altera 

– Optimization of OpenCL for Altera FPGAs 
Training by Altera

– Building Custom Platforms 

Online training

– Introduction to Parallel Computing with OpenCL

– Writing OpenCL Programs for Altera FPGAs

– Running OpenCL on Altera FPGAs

– FPGAs vs GPUs

– Single-Threaded vs. Multi-Threaded Kernels

– Building Custom Platforms for Altera SDK for OpenCL

– OpenCL Optimization Techniques: Secure Hash 
Algorithm (SHA-1) Example

– OpenCL Optimization Techniques: Image Processing 
Algorithm Example

168

http://www.altera.com/products/software/opencl/opencl-index.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/developer-zone.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/documentation.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/developer-zone.html#demonstrationsandwebcasts
https://www.altera.com/products/design-software/embedded-software-developers/opencl/developer-zone.html#designexamples
https://www.altera.com/products/design-software/embedded-software-developers/opencl/developer-zone.html#applicationdevelopers
https://www.altera.com/products/design-software/embedded-software-developers/opencl/documentation.html
http://www.altera.com/education/training/trn-index.jsp
http://wl.altera.com/education/training/courses/IOPNCL110
http://wl.altera.com/education/training/courses/IOPNCL210
https://www.altera.com/support/training/course.html?courseCode=IOPNCLBSP
http://www.altera.com/education/training/trn-index.jsp
http://wl.altera.com/education/training/courses/OOPNCL100
http://wl.altera.com/education/training/courses/OOPNCL200
http://wl.altera.com/education/training/courses/OOPNCL300
https://www.altera.com/support/training/webcasts/wc-index.html?title=fpga-vs-gpu.mp4
http://wl.altera.com/education/training/courses/OOPNCLKERN
http://wl.altera.com/education/training/courses/OOPNCLCSTBOARD
https://www.altera.com/opencl-optimization-sha1
https://www.altera.com/opencl-image-processing-optimization


7/11/2017

79


