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ANATOMY OF FPGA

Acronyms

LUT- LookUp Table

LE - Logic Element

ALM - Adaptive Logic Module
LAB - Logic Array Block
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Field Programmable Gate Array (FPGA)

Programmable
Switch Fabric
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FPGA Logic blocks

FPGA logic is made up of Logic Elements (LEs) or Adaptive Logic Modules (ALMs)
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Logic Element (LE)

Normal Mode - Suited for general logic
applications and combinational functions
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Arithmetic Mode - Implementing adders,

counters, accumulators, & comparators
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The Quartus Prime software automatically chooses the appropriate operation mode for individual

functions for optimal performance

Adaptive Logic Module (ALM)

One ALM contains 4 programmable

registers, each with the following ports:
= Data
= Clock

= Synchronous & asynchronous clear
= Synchronous load

Backward compatible with 4-input LUT
architectures

Quartus Prime automatically configures
ALMs for optimized performance
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Logic Array Block (LAB)

LABs are group of LEs or ALMs
Row and column programmable interconnect

Interconnect may span all or part of the array

H B B B B EE
H H B B BB EEmE
LABs HEEEEEEE.
H H B B BB EEmE R
ow
H B B B interconnec
EEEN ‘
~ Column 4;/-' H u Segmented
interconnect T H R interconnects
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FPGA Embedded Memory
Memory blocks
= Create on-board memory structures to support design
— Single/dual-port RAM
- ROM — 5 ADDRA ADDR B |e—
————» DATAIN_A DATAIN_B [¢—
— Shift registers or FIFO buffers <«—| DATAOUT.A  DATAOUT B | »
3 WEA WEB |l
= |nitialize RAM or ROM contents on power-on — kA CLK_B <J———
- M9K' M1OK' MZOK Embedded Memory Block
= Memory LABs (MLABSs)
= eSRAM
intel) l 10
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Arria 10 Embedded Memories

Maximum Performance 700 MHz 730 MHz
Total RAM Bits per Block 640 20,480
Total M20K Memory Bits (Mb) per Device 2-13 13-54
16K x1,8Kx 2
4K x 4,5
Port Width Configurations 2Kx 8,10
32x16 1K x 16,20
32x18 512x32' 40
32x20 '
Parity v v
Byte Enable v v
Packed Mode v v
Address Clock Enable v
Mixed Clock v v
Mixed Width (for Dual Port modes) v v
ECC Support v Hard
Single Port v v
Memory Modes Simple & True Dual-Port v v
Shift Register, ROM, FIFO v v
intel. l 1
Useful for DSP functions
High-performance multiply/add/accumulate operatlons
108 Bits ; 72 Bits
——
v
64 Bits
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Arria 10 DSP block

Multiplier Modes for Flexibility
= Two 18x19 multipliers, or

m One 27x27 multiplier per block
= 36x36, 54x54 modes using
multiple DSP blocks

104 Bits
-

Integrated Coefficient Registers

m Save memaory and routing
resources

m Built-in timing closure

Hard Pre-Adders

b
= Reduce multiplier usage
m Save routing resources

Up to 1.5 TFlops

Systolic FIR

Direct FIR

Serial FIR

7/11/2017

64-bit Cascade Path
m Supports systolic FIR
= Sum of products

Up to 64-bit Adder/
Subtractor/Accumulator

u 1,024-tap filters

u 2 048-tap symmetric filters

Feedback Register and
Mulitiplexer

» Implement two independent
filter channels per DSP block

Introduced for Arria

FPGAs, standard for all
20 nm FPGAs

intel, l 13

Arria 10 Hard Memory Controller & PHY

Hard memory controller

= Saves logic and memory resources

— 5K LEs and 29 M20K blocks per x72 DDR3 IF

= Up to x144 support

* Up to 4x72 DDR3 interfaces in a single device

Hard memory controller supports

= DDR4, DDR3, LPDDR3
* DDR4 up to 2400 Mbps

Arria 10 FPGA

Core Fabric

User Deslgn
AXI/Avalon IF
Memory Controller
PHY Interface
Hard Nios Il
(calibration/ controp Hrd PHY

1/0O Interface

Hard Memory Controller & PHY
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Core PLLs

Fractional PLL=

7/11/2017

Ty T
m Description s T _PmEme e Low e | pivige | o

# Available

Location on die

1 for every 3 transceivers on device

In the core, adjacent to transceivers

Operating Fractional-synthesis

modes Integer (M/N where M N=Integer)
FPGA clock Transceiver reference clock
network GCLK (global clock)

access PCLK (periphery clock)

RCLK {regional clock)

10 PLLs
I

# Available 1 for every 1O bank (48 GPIOs)

Location on die In the core, adjacent to 10 banks
Operating modes

FPGA clock
network acoess

Integer (M/N where M N=Integer)

External Memory Interface
LVDS SerDes Interface
GCLK (global clock)
PCLK {periphery clock)
RCLK (regional clock)

FPGA IO Elements

Input/output/bidirectional
Multiple I/O standards
Differential signaling

Current drive strength

Slew rate

On-chip termination/pull-ups

Open drain/tri-state

Dhvida 1,
By Fraquancy TR, pazz — weo e —
L — I
z By M

tw
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High Speed 10 Transceivers

Low jitter programmable Flexible clock

clock sources distribution networks

Integrated protocol
hard IP blocks

PCS PMA
Clock Netwark TX Driver
Clock Sources TX Pre- TX Out
ATX PLL ‘M N I
! 8b/10b PCS CMUPLL = > ¢ T
Fabric
Interface 64b/86b PCS fPLL -+ Clock Buffers
PCle PCSHIP
Bypass - RXn
Gearbox for % M e Al M.
configurable interfdce Hard IP for J
widths PCle Gen 2 e
l I Advanced adaptive
ADAPT equalization
intel) l 17
3V 1/0 Block LVDS 1/0 Block
Structure* Structure

SERDES & 0PA
SERDES & DPA
SERDES & DPA
SERDES & 0PA
SERDES & 0PA

VoLane
VoLane

SERDES & 0PA
SERDES & DPA
SERDES & DPA

i0Lane

SERDES & DPA
SERDES & 0PA

loceie (oo

voou_|[ wocuc
oo | w

Hard Memory
Controllerand
PHY Sequencer

worLL =
Controllerand
PHY Sequencer

e
5

SERDES.
SERDES & 0PA
SERDES 80PA
SERDES 80PA

SERDES & DPA
SERDES & DPA

Transceiver Bank

1oLane

SERDES & DPA

1oLane

[[LDS 10 Buter Pl |
LUDS L0 BufferPar SERDES 8 0PA

*Only a single 3V 1/0 Block in Cyclone 10 GX
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FPGA Programming

FPGAs use SRAM cell technology to program interconnect and LUT function levels

Volatile! Must be programmed at power-on!

Row/column .
interconnect SRAM programming cell
junction (latch)

program

= IE I:"_. enable
_SRAM ‘_SRAM l
I programmin
g bit
switch

— — -5
e e ‘13'_ =
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FPGA Floorplan
Variable Precision
DSP Blocks with
Transceiver Hardened
Channels Floating Point
M20K Internal
Memory Blocks
I/O PLLs
Fractional PLLs
Hard IP Per Transceiver,
8b/10b PCS, 64b/66b
PCS, 10GBase-KR FEC, Hard Memory
Interlaken PCS Controllers, General
Purpose IO Cells,
PCI Express* (PCle*) VDS
Gen2
Hard IP Core Logic Fabric
NN
intel) I 20
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FPGA Architecture: Custom Operations Using Basic Elements

|
; b 11l

LAl
< ]
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Wider custom operations are ‘

implemented by configuring and ‘
interconnecting Basic Elements

16-bit add

our custom 64-bit
it-shuffle and encode

32-bit sqrt
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FPGA Architecture: Memory Blocks

addr
data_out
data_in

Can be configured and grouped ‘
using the interconnect to create ‘
various cache architectures ‘

11
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FPGA Architecture: Memory Blocks

| i
) ' H
s data_out E E E
O e
-
E = Few larger
4
Can be configured and grouped Lots of smaller caches

|

|

|
using the interconnect to create ‘ caches

various cache architectures ‘

|

|
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FPGA Architecture: Floating Point Multiplier/Adder Blocks

| i
| B -
| i
data_in data_out i E E E
-
- - L1
Dedicated floating point
multiply and add blocks
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FPGA Architecture: Configurable Routing

i
il =
i
i
Blocks are connected into

matches your application.

|
|
|
|
|
a custom data-path that ‘
l
|
|
|
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FPGA Architecture: Configurable IO

| i -
| i
| L
| - i
The Custom data-path can ‘ E
be connected directly to | ?
custom or standard 10 |_l ‘
interfaces
for inline data processing |_l ‘
= | -
——
[
i
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FPGA DEVELOPMENT FLOW

VHDL, VERILOG vs C

VHDL Verilog C++

14
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VHDL, VERILOG vs C

VHDL Verilog C++

Traditional FPGA Design Process

Synthesize

\ Simulate

SR Write HDL ibmg;D — R
i lm e | j_b - _
T RPN, i T
i ) B> O

\Repeat ,
JO\(—)G oocofou | m .
[l I l L]

[offosfococfo s N

Close Timing
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Tools Flow Overview

v . EDA_
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QSYS Example Design

Memory Tester

Top-Level P o

Qsys System 1P Cores Nios
OnChip RAM Pipetne
(CodaaraOata)  Bige TG AR,
Memory Tester
Data Patorn Genarator | Momory Naster | DataPaten Chocaar
| 1d Contraller
Customs N ' Custom
PRES a1 o Coutee 3 B Patiern
Goecabor Generator : : Shac Checter
i L s | t
Patern SRt (MU 1t "':" e L8 Chechur Seect DMK

DSP Builder Flow

Algorithmic Optimizations

Technology Mapping / Device &
Constraint Driven Optimizations

Pipeline Insertion & Scheduling

testbench

7/11/2017

T Lemd i Fimnn

Simulink test-bench
Device-independent, unpipelined design
Configuration parameters
Clock speed, data rate, input data width, channel count,
Avalon-MM interface definition, ...

Target device
Cycle- and bit-accurate simulation

Optimize design

Fixed and Floating Point

Optimal mapping to device features
Timing-aware pipeline insertion,
balancing and scheduling

Automated resource sharing in IP and
folded subsystems

Component ready for integration
ModelSim testbenches for verification

intel) l 34

17



7/11/2017

Logic Netlist Example

combout

pin = iterm  cell=atom/wysiwyg pin = oterm port = 1/0
" \ ........................
- : combout d inrega ! /

\ clkckotrl

inck[o] i i
T outck \

net

inte) |
Launch & Latch Edges
G2
R
CLK
> Latch
Launch Edge
Edge
CLK
DATA ><_Data Valid >
Launch Edge: the edge which “launches” the data from source register
Latch Edge: the edge which “latches” the data at destination register (with respect to the
launch edge)
inte) |
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Setup & Hold relationships

REG1 N REG2
5™ o Comb.. o= o
Logic
ar
ar

CLK2

) . Latch
— Hold relationship Eaéée

- - Setup relationship

CLK1 ~ \T/E -

CLK2 »

inte) |
Data Arrival Time
The time for data to arrive at destination register’s D input
REG1 \q— E Tgata __REG2
Taia P Logic. P
———
TCO
_
Edge \
e L
REG1.CLK Teo
REG1.Q > Data Valid P4
Tdala
REG2.D j( Data Valid Pl
Data Arrival Time = launch edge + T 1 + Too +Tgata
inte) |
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Data Required Time - Setup

The minimum time required for the data to get latched into the destination register

CLK

REG2.CLK

REG2.D

REG1 REG2
RE Comb PRE
b Q Logic P
—
TC\KZ Tsu
Latch
Edge
e |
Tclkz
Data must be
valid here \ Teu

Data Valid

Data Required Time = Clock Arrival Time - T, - Setup Uncertainty

Setup Slack

The margin by which the setup timing requirement is met. It ensures launched data arrives in time

to meet the latching requirement.

REG1 Tgata __REG2
RE E FRE
b Q Logic P Q
Tclkl
;v—‘ —
TCO Tc\kz Tsu
Launch —
Edge \ Latch
Edge
/

CLK 4|L1—.\— |
REG1.CLK T, S I
REG1.Q Data Valid ><

Tdata‘ ‘
REG2.D >X_Data Valid <
Tc\kZ
‘—>T
REG2.CLK —t—>

Setup

7/11/2017
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Data Required Time - Hold

The minimum time required for the data to get latched into the destination register

REG1 REG2
RE Comb PRE
P Q Logic P

i

- —
Teie Th
>
Latch
Edge
'7 /
CLK I Teia |
Data must }—»
remain valid T
to here h >
REG2CLK ___ T | T~ |
REG2.D ><_Data Valid <

Data Required Time = Clock Arrival Time + T,, + Hold Uncertainty

inte) |
Setup & Hold relationships
Fen Eomb
- CE
CLK1 CLK2
Launch Launch
Edge Edge \
Setup Hold
CLK1 -
— l -
CLK2 - '
— Hold relationship Beh
- - Setup relationship
CLK1 ~J /3 _
CLK2 >
inte) |
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Hold Slack

The margin by which the hold timing requirement is met. It ensures latch data is not corrupted by
data from another launch edge.

REG1 Tdata __REG2
RE PRE

b Q Logic P

Tclkl

o R
——
TCO TCH(Z Th

—

Launch Latch
Edge (Hold) Edge

/
CLK . Tewa !
REG1.CLK

REG1.Q ><_Data Valid

A

REG2.D ><_Data Valid
Teio

REG2.CLK

TimeQuest Prime

Repert (D8 | Report Trng (Worst-Case Path) =

S TmeQuest Teng Ansly | [ Command afo | Summary of Patns
Advanced 1O Tiring
[ SOC Fie Lst

B sow

Sisct From Niode To Node Launch Ciock LatchCock  Rembonshe  CiockSkew  DataDeay

Path #1: Hold siack is 4883 (VIOLATED) Path #1: Hokd slack s 4,863 (VIOLATED)
Fain Summary | Susatcs | DataPsm | wavetom Fain Summary | Stasstis | Oatapam | Wavetorm
= « | Data Arrival Patn
L« ' Totsl ke RF Type  Fanout Locaton Eemant
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Open Project e 4 o i AR Launch Clock Lamhl
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VP Creste Timingewst | |2 L ¥ oS PROA LKt
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pffwlo s RR L 3 RASINSIPLL_ADC_tem_nstatol_0sd1pATICHS] 1
B Report Setup Summ ¥ | © R 1 _Oisdiwice_oi7_ch{0]~chetrbnchi0}
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B ResonRecovery Su. || 0% 183 R K ! e ——— i
B neportremovsisur, | |° as2 o R oL 1 ato_sg0a8a5_ice_roger_n_reql-fesdeniconbout
10 082 o0 R K ' 5 auto_signaksp_0jaca_irgger_in_resithd
Y epert i Pt < # Oata Rrauired
B nevotuaxsiaws, | |11 72 007 AR cEL 1 FFX30_Y23 125 S13_sgnatap auto_snatap_Olace_troser_n_reofs]
B Report et ey Su
Wit Duta Reguirod Path Tine (ra) 00 o781 152 23 am
By mepotrsin Totm |V v | Pl Locaton toment
I Reportoor 1 0000 2000 tch edge time
R resonvenswoity (|2 4 372 Im2 chck patn
4 1" Dagooste 1 a2 e R chc network delsy
3 am 0000 clock uncenainty
‘ 3508 017 w1 #F_x39_23 s si_sgnatapauto_sgnatap_Ofaca tngger_n_req(®)

I Resor roce cone _

x Report Timing: Found 1 hold paths (1 violated). worst case slack is —4.668
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TimeQuest Timing Analyzer

~=1aix|

Features i
B} SDC File: C:/Developing_Classes/Ti
£% Clock Setup Summary

|1l Fack Fistogiam (k]

= Synopsys Design Constraints (SDC)
support
- Standardized constraint methodology | | 8=«

8 Repot Minimum Puise Widt
i Report SDC
£ Resott Unconstrained Path:

» Easy-to-use interface R
i i) Repott Minimum Puise Wik,

- Constraint entry L8 s

KT ——— _>l_| Slack

Edges

11580
970
12380
12750
13120
13530
13020
14010
14700
15000

15670
18280
18650
17000
17430
17620
18210
18600
18080
19380

Slack, in terms Of the current default time unit.

— Standard reporting

T

report_timing ~from_clock clk -setup -npaths 10 -summary -file "Setup Report”
Info: Report Timing: Found 10 setup paths (0 violated). Worst case slack is 11.580

10 11.580

report_timing ~from_clock €1k -setup -npaths 10 ~summary ~File “Setup_Report.txt”

Info: Report Timing: Found 10 setup paths (O violated). worst case slack is 11.580

10 11,580

teh create_slack_histogram -clock_name clk -num_bins 20 -panel_name "Slack Histogram (c1k)"

— Iy

For Help, press F1 Ready | M

tée

= Scripting emphasis

e

— Presentation focuses on using GUI

Chip Planner

Nane
Block Utizaton

Design Partton Panner

jcLock Regions

User-assigned LogicLock Regions
Fiter.placed LogieLock Regions

4 [7] Clock Regions

u Giobal Clock Region

ut Local Clock Region

PLL ADC
Internal Max10

LVDS Clock Region
Quadrant Clock Region

§ i Regional Clock Regon
A e ut Feriphery Clock Region
{ I i i Large Perphery Clock Region
| (] i [
i Layers Settngs | Color Legend
e f [corecten popetes
| [l Selected elements: [FPGA_CLIK1 = FPGA_CLK1~nput
| H
| il ! General
i Path Information
[l Start Node FPGA_CLKI
i End Node sia_signatap:auto_signatap_Oiaca_data_in_reqis)
SignhalTap Jui Timing 4652
I Source lode:
5A Clock i Full Name FPGA_CLK1
at i Goordnate. ©.18)
il BiockUtiizaton 20132
i ResourceType V0 pad
ut Location PILKE
i P Name Pin K6 (Bark 2)
u Location Assignment Yes
ut Fanin [
i Fan-out 1
0 i Destination Node:
| Fullame FPGA_CLK1~input
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On-chip Debug Technology

Debug tools communicate with the FPGA via standard JTAG interface
Multiple debug functions can share the JTAG interface simultaneously

= Altera’s system-level debugging (SLD) hub technology makes
this possible

FPGA

Download
Cable JTAG
Tap

Controlle

intel l 47
. .
SignalTap Window - Data
M [dt Wew Project Prcesseg Toos  Wedow Hen 5 - trrac2m :ﬂl
FH9 R RS
Iigtance Marager: [y 5] | 8 ()| Resety m nopore ® | A chain Coniguraten: TG reacty x |
Itwees seatr Frabed 1Pz 4o Merory: 057778 Smadi 01 L S Y| PO~y = =
& astn mgraas 0 Mt nrng | 2458 el e Olsdocks ar bzoa ¢ :
Dmsce; DL SCCTOSICSFRSCOECS = [ oanchan | |
o | [ som e [ [l
g Trkg 8 201A0TE 1448 48 (0055 slazast) (4] | T
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e #| SRAN_CTRL:GRAN_CTRL O sod-senon 1 TIC00_ 0OGCOAR [ OOSOODE % OOGOOGR . $00010h . O0SOIAR % E0OOTOR 4 BoO0iCH ) mioiOr . -
B 1 SRAN_CTRI RAM_CTR aut_tyteenabe 3] m ™
5 SRAN TS SHAN CTHLDawl rasdd 2
) e SHAN_CTHL SN _CTRL Gend_ruasddula(31.1] DaEEerLy DaEerCy
x SRAM_ZTR SMlaN_CTRLGav_reeddabinshd n |
SRAk_CTRL SRAN_CTRLO wHlreqatst 1 i) 1) [
BRAV_CTAL SRAN_CTRLOMM wrie v I r
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RA TESTRAI TESTMar correbin
Y AN TESTHAR_TESIdeal serar
X MAM_TEST RaM_TESTOal
b RAM_TEST.RAM_TESTORes|_perus 4
RAM_TEST-RAM_TESTOReS_nuniirg
RAM_TEST RAM_TESTORes|_start o A
3 RAM_TEST RAM_TESTOate_srmor ]
Howm | aseto
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HW BUILDING BLOCKS

Elementary math functions supporting floating point

- B FPHypot
Coverage of ~70 elementary math functions FPRanseReduction
Patented & published efficient mapping to FPGA hardware s
. . . Lo FPAddExpert
— Polynomial approximation, Horner's method, truncated multipliers, ... FPAdAN
FhAdcouD
. P FPAddSubE: rt
Compliant to OpenCL & IEEE754 accuracy standards TR et
FPTanP_iX Egmz:Expen
Rounding mode options for fundamental operators FPCotPiX FPConstMul
e
.. — FPSqrt
_ _ FPAI FPDivSqrt
Half- to Double-precision e FPRecinSart
FPArccosX FPCort
FPLA FPArccosPi FPDiv
FPLn1px FPArctanX FPInverse
FPLog10 FPArctanPi FPFloor
FPLog2 FPArctan2 FPCeil
FPExp " FPRound
FPExpM1 FXPToFP A
FPExp2 FPTOFXP FPMod
FPExp10 FPToFXPExpert EEDI
FPPowr FPToFXPFused hReLS
FPTOFP FTw

Trig with argument reduction FPM?x
FPSinX FPMaxAbs

FPCosX FPFusedHorner FPMinMaxFused

FPSinCosX FPFusedHornerExpert FPMinMaxAbsFused

FPTanX FPFusedHornerMulti FPCompare

FPCotX FPFusedMultiFunction FPCompareFused )
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Intel FPGA IP ecosystem

Intel’ FPGA
Intellectual
Property

STRATIX" 0

rade Design Software

OpenCore Plus
IP Evaluation
Tool

FPGA Design Solutons
Network

OpenCore Plus

IP Partners

Intel FPGA IP Catalogue

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/sg/product-catalog.pdf

PRODUCT NAME VEMDOR NAME PRODUCT NAME VENDOR NAME
ARITHMETIC VIDEO AND IMAGE PROCESSING
Floating Point Megafunctions Intel Video and Image Proce Intel
Flaating Point Arithmatic HD JFEG 2000 E ¢
Co-Brocessor Digital Core Design D“:m_; 000 Encoders/ IntoPlX
Floating Point Arithmatic Unit Digital Core Design TICO Lightweight
R El 120 Lig t_‘ae,_1.\¢'|deo IntePIX
Compression
ERROR DETECTION/CORRECTION
Multi-Channel JPEG 2000 —
Encoder/Decoder II Intel Encader and Decoder Cores FCD SRex
e Parallel Intal V-2 High Quality Video Decoder Earco Sdex
P bi Compiler, Lew-Speed! Hybrid e WC-2 High Quality Video Encoder Barco Slex
€ r ' nte
Seral Decoder _ MPEG-2 TS Encapsulator) IntaPIX
Turbe Encoder/Decoder Intel Decapsulator for SMPTE2022 1/2
=]
High-Sperd Read Selomean Enc = S JREG Encodars CAST, Inc.
Decader e z
1= Ultra-fast, 4K-compatible, AVCS H.264
- r z AST, I
BCH Encoder)/Decoder Intel S Baseline Profile Encoder (S
Lowe-Density Parity Check Encoder/ = Low-Power AVC { H.264 Baseline
L el = low | H264 Basel
Decoder & | Profile Encoder CAST, Inc.
Zip-Accel-C: GZIF(ZLIB/Deflate Data
f AST, I in Profile i coder 5
Compression Core CAST, Inc. H.Z65 Main Prafile Video Decodes CAST, Inc.
Zip-Accel-0 GUNZIRZLIFrflate Data e H.265 Encadars Jointwave Group LLC
CAST. Inc.
Decompression Care
H.264 Encoders Jointwave Group LLC

FILTERS AND TRANSFORMS
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Board Partners

T

Bittvvare

www. terasic.com

ABSTRACTING THE FPGA DEVELOPMENT FLOW

2017
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Many functions are easier to specify in software than RTL
Simulation of RTL takes thousands times longer than software
— Creating test benches takes a long time
— Updates to code requires changes to testbench to verify

— Simulation of PCle at 1fs for 500ms = Enough said!

Design Exploration is much easier and faster in software

i'n/t;Dl 55
Mapping a Simple Program to an FPGA
CPU instructions
C/C++ instruction RO € Load Mem[100]
R1 €< Load Mem[101]
Mem[100] += 42 * Mem[101] - R2 €& Load #42
R2 €< Mul R1,R2
RO €« Add R2, RO
Store RO 2 Mem[100]
i'n/t;Dl 56
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First let's take a look at execution on a simple CPU

U J i

LdAddr LdData StAddr
PC — Fetch » Load ’—' Store
l 1 StData
Instruction
Registers
Op g

Aaddr
—_—>

Caddr
—

Val { Baddr

/'y
CWriteEnable T CData

op
{ - General “cover-all-cases” data-paths

Fixed and general
architecture:

- Fixed data-widths
- Fixed operations

intel, l 57

Looking at a Single Instruction

U J i}
PC F Load Store

Instruction

Registers

Caddr

CWriteEnable

=

Op b o e e e .

Very inefficient use of hardware!

intel, l 58
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Sequential Architecture vs. Dataflow Architecture

Sequential CPU Architecture FPGA Dataflow Architecture
load load 42
e ) e ) &)

store

Custom Data-Path on the FPGA Matches Your Algorithm!

High-level code

Mem[100] += 42 * Mem[101]

Custom data-path

’ load ‘ ’ load ‘ 42 Build exa(c)tly w:at you need:
o £ 5o perations

® Data widths

Memory size & configuration
S Efficiency:

Throughput / Latency / Power

mw ®oOo =< o wn o0

intel) l 59

intel) l 60
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Different Solutions for Different Users

For Different
—
Users

Delivery of
Different
Front-Ends

Key _
Technology

Different Objectives and Requirements

Y HDL

1". e “
High Level Design / @

Compiler QUARTUSII

Different Solutions for Different Users

For Different
—
Users

Delivery of
Different —
Front-Ends

Key _J
Technology

Different Objectives and Requirements

“Algorithm” “Software” “Embedded” “Hardware”
Designer Designer Designer Designer

Intel® HLS HDL Code,
Compiler Qsys
(IP) (Schematic)

DSP Builder
(Model)

ot
High Level Design / @

Compiler QUARTUS II

7/11/2017
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OPENCL SDK

What is OpenCL?

A software programming model for software
engineers and a software methodology for system
architects \

— First industry standard for heterogeneous
computing

Provides increased performance with hardware
acceleration

— Low Level Programming language KHRCSNOS
— €99 asbetmtvestil. o1 L L
Open, royalty-free, standard == (AOERA. @
— Created by Apple AMDE S T v
— Managed by Khronos Group £ XILINX. ARM
- Intel active member ﬁ%m, Bros = A cucsson 2

— Conformant to the standard
i'n/t;D l 74
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http://www.khronos.org/
http://en.wikipedia.org/wiki/File:OpenCL_Logo.png
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http://www.intel.com/
http://www.nvidia.com/
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http://www.ericsson.com/mobileplatforms
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OpenCL Use Model: Abstracting the FPGA away

Host Code OpenCL Accelerator Code
main() { __kernel void sum
read_data( .. ); (__global float *a,
manipulate( .. ); __global float *b,
clEnqueuelriteBuffer( .. ); __global float *y)

{
int gid = (0);
y[gid] = a[gid] + b[gid];

}

clEnqueueNDRange(..., sum,..);
clEnqueueReadBuffer( .. ); Standard Altera Offline
display_result( .. ); gcc Compiler Compiler

)i

» Accelerator plugged in the server

intel, l 75

Traditional OpenCL Host Program
Pure software written in standard C/C++ languages

Communicates with the accelerator devices via an APl which abstracts the
communication between the host processor and the kernels

main()

{
read_data_from_file( .. );
Copy data from Host to manipulate data( .. );
FPGA
Tell the FEGA to runa clEnqueuelWriteBuffer( .. );
particular kernel clEnqueueNDRange(.., sum, ..);
clEnqueueReadBuffer( .. );

Copy data from FPGA to
Host display result ( .. );

33
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OpenCL Kernels

__kernel void sum(
__global float *a,
__global float *b,

Kernel: Data-par function
ernel: Data-parallel functio __global float *answer)

= Defines many parallel threads {

o ) int xid = get_global id(9);
- Explicitly or inferred result[xid] = a[xid] + b[xid];
¥

= Keyword extensions to specify parallelism and
memory hierarchy

float *fa= 0 1 2 3 4 5 6 7

Executed by an OpenCL device
- CPU, GPU, FPGA, DSP float *b = 7 ]| 6 Jl 5 Jl4 /L3 Jl 2 /L1109
Code portable NOT performance
portable [~ 1T I | | T T 1
— Between FPGAs it is! float *result = 7 7 7 7 7 7 7 7

Custom Accelerator on FPGA
Local memory (small, fast, shallow, random) J

Custom local memory
architecture:
banking and arbitration

_— _—_——= _—_—— _—

Host Fgmoute Units
Custom compute units
‘ that run the kernels
OpenCL Custom load/store
API units and interconnect
Global Memory (large, fast, deep, bursting)

Host talks to global memory through OpenCL API routines

intel, l 78
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Board Support Package

DDR3 Memory Interface

DDR3 Memory Interface

‘QDRII Memory Interface

OpenCL Domain

QDRII Memory Interface

JESD204

Interconnect

XCVRs

10Gb MAC/UOE Data Interface

10Gb MAC/UOE Data Interface

PCle gen3x8 Host Interface

Guaranteed Timing Closure

= Some interfaces have required
clock frequencies 7"
- PCle 125 MHz / 250 MHz  »@,
- DDR3-1600 800 MHz
- Kernel ??

- prp——
1

Post Place & Route Partition

Compute
Engine

Prebuilt
BSP with standard HDL
Tools by FPGA
Developer

7/11/2017

Built with
Altera
OpenCL
Compiler

intel) l 80
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Start with OpenCL ready platforms 1/2

OpencCL

G’E ratixx

FPGA|= SoC

& arria-

(OpenCL Kernels)

(intel)
Gviave

www. terasic.com

A\ Nallatech

REFLEX-

Custom Embeddod Systems

<72/~

OpenCL
APl

HAL
UMD

=SoC

~
o [
(intel)

ANallatech CBittvwware
Ea sic| IEFLEX-
www.terasic.com ‘

inte) |

Bittware Arria 10 Gx Specifications

Intel Arria 10 GX FPGA - 10AX115N3F40E2SG

— Upto 1150K logic elements available

— Up to 53 Mb of embedded memory

— Up to 3,300 18x19 variable-precision multipliers

PCle x8 interface supporting Gen1, Gen2, or Gen3

Dual QSFP cages for 2x 40GbE or 8x 10GbE

Up to 32 GBytes of DDR4 SDRAM with ECC (x72)

BMC for Intelligent Platform Management

Precision clock and timing options

Utility I/0O: USB 2.0

intel, l 82
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Development Flow for FPGA

Board Support Package

- ' \7rf§tjal Studio

How Does i++ Compiler for HLS Differ From OpenCL?

To wa

Board Support Package

5.5
ﬂ » Vlsual Studio

;|

intel, I 84
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Multi-Step AOC Compilation

—> Modify kernel.cl -

4

x86 Emulator (sec) —

4

Optimization Report (sec) —

4

— Profiler (hours)

intel) l 85
OpenCL Compiler Flow
l host.c
kernel.cl Front End
Parses OpenCL extensions
and intrinsics — produces C Altera
..... IAEAAL npiler Runtim
e
Unoptimized ﬁ Library
Optimized
LLVM IR S
OpenCL
RTL Verilog Platform
generator PCle
intel) l 86
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OpenCL Compiler Flow

CLANG
front end

Unoptimized
LLVM IR

Optimizer

Optimized
LLVM IR

host.c

7/11/2017

C
compiler

|
Middle End
~150 compiler passes such
as loop fusion, auto
vectorization, and branch
elimination leading to
more efficient HW

.exe

OpenCL

RTL
generator

Verilog Platform

Altera
Runtim

Library

] e‘ PCle

e

OpenCL Compiler Flow

CLANG
front end

Unoptimized
LLVM IR

Optimized
LLVM IR

host.c

intel) l 87

c
compiler

S~

Altera
Runtim

Library

e

Back End

e Instantiate Verilog IP for

each operation in the

intermediate representation

* Create control flow

cireutry to handle loops,
memory stalls and

] branching

Verilog * Traditional optimizations
such as scheduling and
resource sharing

=3

PCle

intel) l 88
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Architectural Viewer (Stall Points)
Local memory is well-configured into multiple

Local memory is 2D [1024][4]. banks. All loads and all stores can be
Compiler can prove, by access serviced every clock cycle.
analysis, that accesses to each The banking is also described in words in
Kernels - lower dimension are disjoint. Area Report but not how each load/store
connected to each bank.

Stall Poirts Grapn

#define NUM READS 4
attribute{ireqd work group size(l10z4

1110

3 = kemnel void big_Imem (global int=

restrict in. global int* restrict outd

i

Width 22 Bt

Selected store

Twpe Bigntines

B S O

1 Stall free | Yes
5 local int Imemi1024)(NUM_READS];, 1 mad
G
¥ nt gi = get_global_id(o}; iz
8 nt gs = gef_glabal_size{n;
o ne | = gat_iocal_laio; =5 — .
10 Nt Is = geb_local_size{0; - — — L 111
11 . I
1z nt res = inlgil: Sigee [ Sigen L—" | am
13 o« . ol = S
14 - Sinen Lt I
15 - T Eew
= Come — - i
10 -_—
15 e | — [ . [EEw
20 )
21
22
23~ 10 = NUM READS: i++) {
24 == Imvemi{ s o sl
25
2o
27 outlgill = res:
28 }

Compile-time known address.

Area Report

Shows estimated resource usage for each line of code
Provides details explaining reason for inefficiencies
Information on how to improve your design

Enhanced accuracy of estimates and relationship to code

1 #define NUM_READS 8
2 #define NUM_WRITES 8
3 #define NUM_BARRIERS 2
4

5 __attribute((reqd_work_group_size(1024,1,1)))
6 kernel void big_lmem (global int* restrict in,
7 global int* restrict out) {

8

9 local intlmem[1024];

10 int gi = get_global_id(0);
11 int gs = get_global_size(0);

12 intli = get_local_id(0);
13 intres = in[gil;

S
R e s nagen [wen [ne
} e . . u u
19 barrier(CLK_GLOBAL_MEM_FENCE); Nraas aa Ie
20 res=0; s o " " ..

21 #pragmaunroll
22 for (int i=0;i < NUM_READS;i++) {
23  res A= Ilmemlli-i];

25 out[gi] = res;
}
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Dynamic Profiler

Intel FPGA SDK for OpenCL enables users to get runtime information about their
kernel performance

Bottlenecks, bandwidth, saturation, pipeline occupancy

Performance Stats Execution Times

intel, l 92

Key Optimization Methodology is Still Data Localization

10 TFLOP floating point performance in Startix 10 s m g s

— Use every DSP, every clock cycle compute spatially

>8 TB/s memory bandwidth: keep state on chip!

— Exceeds available external bandwidth by orders of
magnitude

— Random access, low latency (2 clks)

— Place all data in on-chip memory compute
temporally

] WANNNNNAINR  ANNNANENNR

Avoid costly data movement ] _
Fine-grained & low latency
— Highest performance/W of Intel's programmable between compute and memory
offerings

intel, l 93
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OPENCL EXECUTION MODELS

Harnessing Pipeline Parallelism

Mapping Multithreaded Kernels to FPGAs

= The most simple way of mapping kernel functions to
FPGAs is to replicate the unrolled hardware for each
thread

- Inefficient and wasteful

m Better method involves taking advantage of pipeline
parallelism
- Attempt to create a deeply pipelined representation of a kernel
- On each clock cycle, we attempt to send in input data for a new thread

- Method of mapping coarse grained thread parallelism to fine-grained FPGA
parallelism

intel) l 95
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Example Datapath for Vector Add

8 work items for vector add example

Work item IDs

On each cycle the portions of the
datapath are processing different

threads

While thread 2 is being loaded, thread 1
is being added, and thread O is being

stored

Example Datapath for Vector Add

Load

—
0

Load

Store

8 work items for vector add example

Work item IDs

On each cycle the portions of the
datapath are processing different

threads

While thread 2 is being loaded, thread 1
is being added, and thread O is being

stored

7/11/2017

intel) l 96

intel) l 97
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Example Datapath for Vector Add

8 work items for vector add example

v 230450 61|7
1 il i Eaal B A

Load 1 ( Load 1

0 Work item IDs

On each cycle the portions of the
datapath are processing different
threads

+

Store

While thread 2 is being loaded, thread 1
is being added, and thread O is being
stored

intel) l 98

Example Datapath for Vector Add

8 work items for vector add example

Work item IDs

On each cycle the portions of the
datapath are processing different
threads

+
0

Store

While thread 2 is being loaded, thread 1
is being added, and thread O is being
stored

intel) l 99
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Example Datapath for Vector Add

8 work items for vector add example

v 4 5 6 7

3 L L L

Load 1 ( Load 1

> Work item IDs

On each cycle the portions of the
datapath are processing different

2 :
r
threads
Store While thread 2 is being loaded, thread 1
O . . . .

is being added, and thread O is being
stored

Silicon used efficiently at steady-state

intel) l 100
Execution of Threads on FPGA
Better method involves taking advantage of pipeline parallelism
= Throughput = 1 thread per cycle
_\1'.
LIS
§ =
:?[ lib a1t4 tT_l
S —
intel) l 101
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OPTIMIZING KERNEL FOR FPGA

7/11/2017
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Goals of OpenCL Optimization

Keep as much FPGA resources busy as possible doing useful stuff!
= Increase the number of parallel operations (Reduce T,

= Reduce communication latency of the accelerated system (Reduce T,)

= Increase efficiency of operations (Reduce T)

= Minimize overhead (Reduce T,)

Unaccelerated System
1

r 1
Ts | Ty | T

System Acceleration Ag

TAS | Th | Tc Taf |

L J
!

Accelerated System

Optimization technics

Loop Unrolling

Vectorization

Kernel Compute duplication

Task Kernel: Single Work-Item Kernels
Channels

NDRange Execution

Memory Optimizations: Global, Local & Private

Floating Point Optimizations

7/11/2017

intel) l 104
intel) l 105
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LOOP UNROLLING

Loop Unrolling

By default, loops can hinder performance

Loop unrolling replicate hardware to execute multiple loop iterations at once
Increase performance by decreasing number of iteration through loop

= Structure of the compute units built will be significantly altered

= More resource consumption

= More local memory ports may be required

Simple loops will be unrolled automatically

= AOC will generate a warning

intel) l 107
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unroll kernel pragma

#pragma unroll <N> instructs AOC to attempt to unroll a loop <N> times
= Without <N>, AOC will attempt to unroll the loop fully

= Warning issued if AOC unable to unroll

#pragma unroll 2
for (size t k=0; k<4; k++)
{

mac += data in[ (gid*4)+k] * coeff[k];

Loop Unrolling Example

Sum of 4 values for every work-item accum = 0;

for (size t i=0; i<4; i++)

Store a new result every 4 iterations {

accum += data in[ (gid*4)+i];

}

sum_out [gid] = accum;

Store every
4 iterations

For End

inte) |
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Loop Unrolling Example: Fully Unrolled

Unroll every iteration of the loop ceet =5 0
|#pragma unroll |
Store a new result every clock cycle tor {size t 1=0; i<d; i++)

{
accum += data in[ (gid*4)+i];
}

sum_out [gid] = accum;

mam -arrm @

Store
every

Additional Optimizations Shown: cycle
1. accumregister removed
2. Order of operation optimization done if allowed
3. Operators removed if not needed
* There would be 4 adders created if initial value of accum is not 0.

inte) |

Loop Unrolling in the Optimization Report

Loop unrolling reported in the <kernel file>.log
Reported information

= Loop location

= Nesting relationship

= Requested unroll factor

. Loop Report:
= Achieved unroll factor
+ Fully unrolled loop (file nd full nested.cl line 4)

| Loop was automatically and fully unrolled.

| Add "$#pragma unroll 1" to prevent automatic unrolling.

-+ Fully unrolled loop (file nd full nested.cl line &)
Loop was fully unreolled due to "#pragma unrcll" annotation.|

intel, l1n
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VECTORIZATION

Kernel Vectorization

Widen the pipeline to achieve higher throughput

= Allow multiple work-items from the same workgroup to execute in Single Instruction
Multiple Data (SIMD) fashion

Translate scalar operations into SIMD operations
= E.g. multiplication or addition
= Can be done manually or automatically

Load Load Load Load
ali] bli] a[i]...afi+n] bl[i].b[i+n]
M—p—" N e «
afi]+b[i] ali]+b[i] afi+n]+b[i+n]
v \ v

Store Store
c[i] c[i]...cfi+n]
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Vectorize Kernel Code Manually

Replicate operations in the kernel manually

Must also adjust NDRange in host application

__kernel void mykernel (..)

{
size t gid = get global id(0);
result[gid] = in_a[gid] + in b[gid];

__kernel void mykernel (..)

{
size t gid = get_global id(0);

result [gid*4+0] = a[gid*4+0] + b[gid*4+0]; Manually
result [gid*4+1] = al[gid*4+1] + blgid*4+1]; Vectorized
result [gid*4+2] = al[gid*4+2] + blgid*4+2]; Kernel
result[gid*4+3] = a[gid*4+3] + b[gid*4+3];

intel) l 114

Automatic Kernel Vectorization

Use attribute to enable automatic kernel compute unit vectorization
= Memory accesses automatically coalesced
= No need to adjust NDRange in host application

num_simd_work_items attribute

Specify the number of work-items within a workgroup to be executed in a SIMD manner
— Hardware operators automatically vectorized

= Vectorization only takes affect in the X dimension of the workgroup

= Must use with reqd_work_group_size attribute

— reqd_work_group_size must be evenly divisible by num_simd_work_items in the X
dimension
Factor of 2.4.8.16 __attribute ((num_simd work_items(4)))
o __attribute  ((reqd_work_group_size(64,1,1)))
__kernel void mykernel (..)

52



7/11/2017

KERNEL COMPUTE DUPLICATION

Default Compute Units

Only one compute unit per kernel created by default

Workgroups distributed to compute unit in sequence

WANNANNNUNN NANWNNUNNNR  NNNNNNNNNNR NNNANNNNNR

B
E
E
E
E
=
E
E
E
E
E
=
B
E
E
E
E
B
E
E
E
E

intel, l 17

53



7/11/2017

Multiple Compute Units

Use num compute unit attribute to specify number of kernel compute units to
= Entire compute unitincluding all local memory, control logic, and operators replicated

Workgroups from the same NDRange kernel launch are distributed to available
compute units and processed in parallel

= Need at least three times as workgroups as compute units to effectively utilize all hardware

Load Load
| I

Store

DDR
QDR

Load Load

__attribute ((num_compute units(3))
)

__kernel void ..

Store

wil[ k1 ][]

Elapsed Time

Example: Combining Replication and Vectorization

Resource estimates of 16 SIMD lanes indicate “no fit”

Resource estimates of 8 SIMD lanes suggest 12 lanes may fit
= Automatic vectorization only supports 2, 4, 8 and 16 lane configurations

Generate 12 lanes by combining num_simd_work_items and num_compute_units

attribute ((num_simd work items(4)))
attribute ((num compute units(3)))
attribute ((reqd work group size(8,8,1)))

kernel void mykernel (..)

.

obal Memory

—— Stores —— Stores Leees Stores

X4 SIMD Kernel CU1 X4 SIMD Kernel CU2 X4 SIMD Kernel CU3

intel, l 119
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Kernel Attributes in the Optimization Report

Effects of all kernel attributes are reported in the <kernel file>.log file

IKernel: HovAv

The kernel is compiled as an HD-Range.

The kernel was[uecturized for 2 SIHD work—items]along the lowest dimension.

The kernel was|replicated 2 times due to num_compute_units attribute.
You should have = i of compute units

|to efficiently utilize all compute units.

The kernel has a[required work-group size of (128, 1, 1). ]

intel) l 120

experience
what's inside”

TASK KERNEL: SINGLE WORK ITEM
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Single Work-Item Execution

Launching kernels with NDRange of (1,1,1)

= Akernel executed on a compute unit consisting of one work-item

= Defined as a Task in OpenCL

Why?

= Data parallel (multiple work-items) execution may not be suitable for certain situations
Difficulties partitioning data among parallel works-items

Dependency across work-items

Data not available prior to kernel execution

Data not easily divided into workgroups

= Sequential programming model of tasks more similar to C programming
— Certain usage scenario more suited for sequential programming model

— Easier to port

Tasks and Loop-pipelining

Allow users to express programs as a single-thread kernel

for (int i=1; i < n; i++) {
c[i] = c[i-1] + b[i];

7/11/2017

intel) l 122

| Load

}

Store

Compiler will infer parallel pipelined execution across loop iterations

= Pipeline parallelism still leveraged to efficiently execute loops in Altera’'s OpenCL solution

= Dependencies resolved by the compiler
= Values transferred between loop iterations with FPGA resources
— No need to buffer up data
— Easy and cheap to share data through feedbacks in the pipeline

inte) |
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Loop Pipelining

AOC will pipeline each iteration of the loop for acceleration
= Analyze any dependencies between iterations

= Schedule these operations

= Launch the next iteration as soon as possible

float array[M];

for (int i=0; i < n; 1i++)

{

for (int j=0; j < M-1; J++) Shift Register array
array[j] = array[j+1]; (Dependency for next iteration)
array[M-1] = a[i]; - At this point, launch
: . . . the next iteration
for (int 3=0; J < M; J++) Reduction on array
} answer[i] += array[j] * coefs[j]; (Not a dependency)

intel) l 124

Loop Pipelining Example

No Loop Pipelining With Loop Pipelining
i0

Clock Cycles

i4
|:| . execution!
i5

i0
i1
i2
] i3 Looks like multi-
l |:| ““““ threaded

Clock Cycles

Finishes Faster because Iterations

i I
No Overlap of Iterations! Are Overlapped
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Parallel Threads vs Loop Pipelining

Parallel Threads Loop Pipelining
t0 i0
i1

I:I Loop
i1 )
2 Parallel threads launch 1 1 iz dependencies may
[ thread per clock cycle in 3 / not be resolved in
pipelined fashion I ! 7 1 clock cycle
i
i E i5

Loop Pipelining enables Pipeline Parallelism AND the communication of state
information between iterations.

= |f dependency can be resolved in 1 clock cycle, then the resulting computational throughput is
the same

intel) l 126

CHANNEL

58



7/11/2017

Communication: Channels/Pipes

Key for systolic array architectures
Enables much lower latency data movement through data processing paths (result reuse)
— No need to move data back and forth to external memory or cache

Provide unidirectional, FIFO-like communication into or out of kernels, or into or out of FPGA
— Pipes are built on top of channels and only support kernel to kernel data movement

Kernel 1 Kernel 2

ﬂ Pipe ﬂ
| Write IZZ# | F||Fb | |::>| Read |
I I

Arrows indicate
dataflow direction
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Traditional Data Movement Without Channels

Kernel
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Data Movement Using Channels

~@~%

HOST I System I
Memo

intel, 130

Systolic Array of Compute Units ’

Cl

(T

Replicate kernel hardware with num_compute_units(X,Y,Z) attribute

= Creates X*Y*Z copies of kernel pipeline
— Increases throughput

— When applied to NDRange kernels, these copies used to execute multiple workgroups
in parallel
— More on this in the Optimizing NDRange kernels section

— Consumes X*Y*Z times more resources for that kernel compute unit

With single work-item kernels, AOC allows customization of kernel compute units
using the get_compute_id() function

= Create compute ID dependent logic

intel) | 131
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Example with num_compute_units

Using compute ID to determine channel usage

channel float4 ch PE row[3][4];
channel float4 ch PE col[4][3];
channel float4 ch PE_row_side[4];
channel float4 ch PE col_side[4];

__attribute ((autorun))
__attribute_ ((max_global work dim(0)))
__attribute  (( ))
kernel void PE() {
float4 a,b;
if ( ==0) //First PE of row
a = read_channel (ch_PE_col_side[col]);

else
a = read_channel (ch_PE_col[row-1]([col]);
Channels/Pipes

if (get_compute_id(1)==0) Kernel CU

intel, l 132
Other Topologies Possible in FPGA Too
Linear Pipeline / Daisy chain
DDR4 DDR4
seclqjué:r?cer I:‘ PE }HEE_J
I Ring
DDR4 PE PE
intel, l 133
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Use Case: Matrix Multiplication

c A B Processing Element Deslgn

feeder
1]
feeder (» M .
Store C | Load A | | Load B 't' ju N
| | | feeder |—) = 5
. on 2hip Memery 2 hip Pdemony bl _Wﬁ
olcIcRCICRCICES l By &
T T T feeder |—) Hog =y
i & & ,_'-{_“”J 4 |
k?? b \? fee_d;r |—)~ feeder v-)| feeder H feeder
& LoadA | P ey e Y
il, Load B ) 4
| StoreC | Coalesce results
Performance: ~1 TFLOPs DDR4
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MEMORY OPTIMIZATIONS

Global Memory & Local Memory
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OpenCL Global Memory

Global Memory Overview
= Programmers view of global memory in OpenCL

= Compiler view of global memory

Global Memory in OpenCL

__kernel void Add(__global float* a,

‘global’ address space
__global float* b,
__global float* c)

= Used to share data between host and device {
int i = get_global id(0);

c[i] = a[i] + b[i];

= Shared between workgroups :

Generally allocated on host as cl_mem object
= Created with clCreateBuffer
= Data transferred with clRead/clWrite Buffer

= cl_mem object assigned to global pointer argument in kernel

7/11/2017
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OpenCL BSP Global Memory

vv

daa

Processor

Kernel
Pipeline Pipeline

hhik hﬂnh
\ Local Memory Interconnect Local Memory Interconnect J

Compiler’s View of Global Memory

Agnostic to the memory technology itself
= DDR, QDR, HMC, QPI

Only a few pertinent parameters (provided by BSP)
= How many interfaces

Width of the bus

Burst size (affinity for linear access)

= Latency
Bandwidth

Exposed as Avalon Memory Mapped Slave
= Compiler builds datapath and interconnect to communicate to fixed IP
= BSP developer can create BSP variants for different memory configurations

e o - - -

7/11/2017
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OpenCL Global Memory

Global Memory Architecture
= Load-Store Units
= LSU Arbitration

= Const Cache

intel, l 140

Compiler Generated Hardware

foo.cl

global int* x; Pipeline

|nt y=x[K];

Load Unit

AOC Compiler

Global
Memory
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Global Load/Store Unit (LSU)

Width Adaptation

Pipeline

= User data (32-bit int) to memory word
(512-bit DRAM word)

= Coalesces to avoid wasted bandwidth

Burst coalescing

= Coalesces consecutive memory
transactions into large burst
transaction

(€][e]oF:]
Memory

LSU Types (1)

Pipelined

= Used for local memory

Simple

= Passes transactions to interconnect from pipeline
= Used for loads/stores used very infrequently

Burst-Coalesced
= Most common global memory LSU
= Specialized LSU to groups loads/stores into bursts
= Load LSU can cache/re-use data
— Private caching is applied heuristically

Streaming

= Simplified LSU used if compiler can determine access pattern is completely linear

7/11/2017
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LSU Types (2)

Semi-streaming
= Load LSU Specialized for nearly linear accesses
= |nstantiated heuristically

Burst-non-aligned

= Wrapper around Burst-coalesced LSU, instantiated if access alignment may not be aligned
to LSU width

= Tries to minimize overhead of non-aligned accesses by coalescing

Wide LSU

= Wrapper around other LSU types, converts wider than global memory accesses into global
memory sized accesses
= More area efficient than multiple memory width LSUs

intel, l 144

Arbitration

o Arbitrate to physical interfaces
Pipeline

» Tree interconnect (high bandwidth)

» Ringinterconnect (high fmax)

— Increase reliance on large bursts

= Arbitration type chosen base on # of LSUs

Distribute (load balance) across physical interfaces

(€][o]oF]
Memory

intel, l 145
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Const Cache

Constant buffer resides in global memory but accessed via on-chip cache shared
by all work-groups

= Constant cache optimized for high cache hit performance
Use for read-only data that all work-groups access

= E.g. high-bandwidth table lookups

Constant cache default size is 16kB

= Uses on-chip RAM blocks that are shared with local memory

intel, l 146

Complete Picture

pizl@rl@rw

Load Unit Constant Constant
Load Unit Load Unit

/decoupled/
stream Coalesce

Global
Memory
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OpenCL Global Memory

Optimizations

intel) l 148

Contiguous Memory Accesses

Interleaved memory suitable for contiguous access

= Sequential accesses to global memory are the ideal access pattern to increase memory
efficiency

AOC will analyze access pattern of load and stores

Looks for sequential load and store operations for the entire kernel and directs
kernel to access consecutive locations in global memory

Leads to increased access speeds and reduced hardware resource needs

intel, l 149
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Array Indexing and Contiguous Memory Accesses

Basing array index on the work-item global ID leads to efficient contiguous load
and store operations

= Data sent to and received from the kernel pipeline as needed
= Computation and memory accesses can happen simultaneously

__kernel void mykernel (..) {
size t gid = get _global id(0);
clgid] = al[gid] + blgid];

Conl_sggstlve a[N-1] a[N-2] .. a[3] a[2] a[1] a[0]
Global Consecutive Kernel
bIN-1] b[N-2] ... b[3] b[2] b[1] b0} i
Memory Load Gl T P T Pipeline
cl0] c[1] cf2] cf3] ... cIN-2] c[N-1] Consecutive
Store |

intel) l 150

Contiguous Memory Accesses (Tasks)

For Task kernels, memory should be indexed with an increasing loop counter for
contiguous accesses

__kernel void mykernel (..) {
for(int i = 0; i<BUFFER SIZE; i++)
{
c[i] = a[i] + b[i];
}

intel, l 151
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Ensure 4-Byte Alignment for Data Structures

Struct alignments smaller than 4 bytes result in larger and slower hardware

typedef struct { -
char r,g,b,alpha; 1-byte aligned
} Pixel; struct

Force 4-byte alignment

Create a union of the structure Use aligned attribute with
. or
and an integer GCCor in the kernel

typedef struct ({ typedef struct {
char r,g,b,alpha; char r,g,b,alpha;
} Pixel_s; } _ attribute ((aligned(4))) Pixel;

typedef union {
Pixel s p;
int not used;
} Pixel;

intel, l 152

Using _constant Buffers

Constant cache default size is 16kB

= Uses on-chip RAM blocks that are shared with local memory
Manually specify cache size with AOC option

= Specify in bytes, AOC will round up to closest power of 2

= Have no effect if no kernels use __constant address space
Constants suffer huge penalties for cache misses

= Use__global const instead if constant argument can't fit in the cache

aoc —-const-cache-bytes 32768 mykernel.cl

intel, l 153
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Global Memory Banking Optimizations

Address space can be partitioned between banks or finely interleaved

Default: Configures global memory as burst-interleaved
= Best for sequential traffic
= Best for load balancing between memory banks

Burst-interleaving granularity determined by board vendor

Burst-Interleaved Non-Interleaved Separate Partitions
Address Address
IrEr_FEFF QiFFE_FETFT

Bank 2 OxTFFFFCO0

Bank 2

Bank 1

Ox7FFF_Fao0
NxA000_0000

: Cre(000_0R00 {3FFF_FFFF
Bank 2
Qee0000_0400 Bankd

intel, l 155

Manually Partitioned Global Memory

Turn off interleaving and assign data manually into memory banks

= Control memory bandwidth across a group of buffers

Advantages

= Better performance when accessing multiple pointers assigned to multiple banks

= |eads to more deterministic behavior

— Designer knows the access pattern

In majority of use cases, manually partition of global memory leads to improved
performance

intel, l 156

72



7/11/2017

Manual Partitioning Mechanism

aoc —--sw-dimm-partition <kernel file>.cl
= Configure memory banks as non-interleaved address spaces
Use CL_MEM_BANK flags to allocate memory buffer to one of the banks

= Allocate each buffer to a single memory bank only

CL MEM BANK 1 ALTERA Allocates to lowest available memory region
CL _MEM BANK 2 ALTERA Allocates to the second memory bank
CL _MEM BANK n ALTERA Allocates to the n' bank, as long as the board supports it

clCreateBuffer (context, CL_MEM BANK 2 ALTERA |
CL_MEM READ WRITE, size, 0, 0);

intel, l1w

Avoiding False Memory Dependencies

Avoid using pointers that alias other pointers

= Only one pointer variable is used to access the contents

Use the restrict keyword whenever possible
= Specify to the compiler no aliasing for a pointer

= Prevents AOC from creating memory dependencies between non-conflicting load and
store operations

= May cause functional errors if used with pointers that aliases other pointers

__kernel void my_ kernel ( _ global int * restrict A,
__global int * restrict B)
{

}

intel) l 158
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Heterogeneous Memory

Some boards offer more than one type of global memory
= Eg. DDRand QDR
= One memory will be used by default

Memory location can be assigned per kernel argument
= attribute((buffer location (“"MEMORY NAME")))

Host will move memory to correct memory type upon kernel invocation

__kernel void foobar (
__global uint *src,
__global uint *dst,
__global  attribute((buffer location("QDR"))) char* g tables)

intel) l 159

FLOATING POINT OPTIMIZATIONS
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Floating-Point Optimizations

Apply to float and double data types

AOC has the ability to create more efficient hardware for floating-point operations
Optimizations will cause small differences in floating-point results

= Not IEEE Standard for Floating-Point Arithmetic (IEEE 754-2008) compliant

AOC floating-point optimizations

= Needs to be manually enabled

= Tree Balancing

= Reducing Rounding Operations

Other optimizations

= Floating-point vs. fixed-point representations

= Use a device with hard floating point

intel, l 161
Arithmetic Order of Operation Rules
Strict order of operation rules apply in OpenCL
By default, AOC honors those rules
= May lead to long, unbalanced, slower, less-efficient floating-point operations
Example Result = (((A * B) + C) + (D * E)) + (F * G)
D [E F 6
c
A
B — ,
Long Vine o\I Operations
i'ntel' l 162
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Tree Balancing

Allow AOC to reorder arithmetic operations to convert into a tree pipeline
structure
= Possibly affects the precision, not consistent with IEEE 754

Enable AOC tree balancing with —~fp-relaxed option

= Design needs to tolerate the small differences in floating-point results

aoc --fp-relaxed <kernel file>.cl
lc.
“, Result = (((A * B) + C) + (D * E)) + (F * G)
Result

@mmpo Wk

Same Operation, Balanced Tree Implementation

intel) l 163

Rounding Operations

For a series of floating-point operations, IEEE 754 require multiple rounding
operation

Rounding can require significant amount of hardware resources
Fused floating-point operation
= Perform only one round at the end of the tree of the floating-point operations

= | eads to more accurate results

= Other processor architectures support certain fused instructions such as fused multiply and
accumulate (FMAC)

= AOC can fuse any combination of floating-point operators

intel, l 164
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Reducing Rounding Operations

AOC will not reduce rounding operations by default
Enable AOC rounding reduction with --fpc option
= Not IEEE 754 compliant

= Use when program can tolerate these differences in floating-point results
aoc <kernel file>.cl

1. Removes floating-point rounding operations whenever possible
Round floating-point operation only once at the end of the tree of operations
Applies to *, +,and -
2. Carry additional mantissa bits to maintain precision
Carries additional bits through calculations, removes them at the end of the tree of operations
3. Changes rounding mode to round toward zero

intel) l 165

Floating-Point vs. Fixed-Point Representation
Fixed-point implementation always use less logic compared to floating-point
representation

= Save hardware by converting operations to fixed-point

No variable width fixed-point representation in OpenCL

= Use char (8-bit), short (16-bit), int (32-bit), or Long (64-bit)

If data resolution required is not one of the default supported ones (8, 16, 32, or
64), use appropriate masking operations to save hardware

= Saving are relatively small but can be significant if applied across a large design

intel, l 166
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Fixed-Point Example

7/11/2017

17-bit fixed-point data resolution needed

= Use 32-bit data type to store the value

= Avoid generating hardware for the upper 15 bits by using static bit masks

= Result: 17 bit addition implemented instead of 32-bit addition

32-bit data types

__kernel fixed point_add(__global const unsigned int * restrict a,
__global const unsigned int * restrict b,
__global unsigned int * restrict result)

size_t gid = get_global id(0);
unsigned int temp;
result[gid] = Ox3_FFFF &

| \

Mask away upper 14 bits of results

Want to learn more?

Developer Zone
— OpenCL online demos

— OpenCL design examples
- lication Developer Partners

White papers, Publications and
Optimization Tips for OpenCL

Instructor-Led training

— Parallel Computing with OpenCL Workshop by
Altera

— Optimization of OpenCL for Altera FPGAs
Training by Altera

— Building Custom Platforms

((0x1_FFFF & al[gid]) +

(0x1_FFFF & b[gid]));

Mask away upper 15 bits of inputs
intel, l 167

Online training

— Introduction to Parallel Computing with OpenCL

— Writing OpenCL Programs for Altera FPGAs
— Running OpenCL on Altera FPGAs
- FPGAs vs GPUs

— Single-Threaded vs. Multi-Threaded Kernels
— Building Custom Platforms for Altera SDK for OpenCL

— OpenCL Optimization Techniques: Secure Hash
Algorithm (SHA-1) Example

— OpenCL Optimization Techniques: Image Processing
Algorithm Example

intel) l 168
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