
First steps in Cypher

We will learn how to

• represent nodes and relationships in Cypher

• create and find nodes

• add properties

• use constraints and create nodes uniquely

• create relationships

• find patterns

• delete data

• Made for Graphs (create, update, query)

• All about Patterns

• Using Ascii Art for Patterns

• Declarative, Readable, Expressive

• Powerful Capabilities

• Open Language

Cypher the Graph Query Language

Ascii Art: Nodes

() or (n)
• Surrounded with parentheses
• Use an alias to refer to our node later

(n:Label1:Label2)

• Specify a Label, starts with a colon :
• Group nodes by roles or types, think of labels as tags

(n:Label {prop: 'value'})

• Nodes can have properties

Ascii Art: Relationships

--> or -[r:TYPE]->
• Wrapped with hyphens & square brackets
• Like labels, a relationship type starts with a colon :

< > Specify the direction of the relationship
-[:KNOWS {since: 2010}]->

• Relationships can have properties too!

Ascii Art: Relationships

(n:Label {prop:'value'})-[:TYPE]->(m:Label)

• mini graph examples that we want to search for
• use variables for later use

(p1:Person {name:'Alice'})-[:KNOWS]->(p2:Person {name:'Bob'})

Intro to Cypher: Demo

I'll demo on a shared machine
You'll join soon

http://l.neo4j.org/trainer

CREATE a person node within the graph to represent yourself!

Label of :Person

Property :name should be 'My Name'

Let's try it - CREATE myself!

CREATE statement:

CREATE (p:Person {name: 'My Name'})

RETURN p;

Properties are stored as key-value pairs {key:'value'}

Properties can be Strings, numbers, or booleans, and lists of Strings,
numbers, or booleans.

Welcome to the graph

CREATE (p:Person {name: 'My Name'})

RETURN p;

Then run the following query

MATCH (p:Person {name: 'My Name'})

RETURN p

OOOPS! I created two of me, that's not good.

Let’s try running the create statement again

Constraints

Unique Constraints

We create unique constraints to:

• ensure uniqueness

• allow fast lookup of nodes which match label-property pairs.

We create unique constraints to:

• ensure uniqueness

• allow fast lookup of nodes which match label-property pairs.

CREATE CONSTRAINT ON (label:Label)

ASSERT label.property IS UNIQUE

Unique Constraints

Let’s create a constraint on :Person(name):

CREATE CONSTRAINT ON (p:Person)

ASSERT p.name IS UNIQUE;

Creating a constraint

Let’s create a constraint on :Person(name):

CREATE CONSTRAINT ON (p:Person)

ASSERT p.name IS UNIQUE;

Unable to create CONSTRAINT ON (person:Person) ASSERT person.name IS UNIQUE:
Multiple nodes with label `Person` have property `name` = 'My Name':
 node(292)
 node(293)

Oops! Our data violates the constraint we’re trying to create.

Creating a constraint

Creating a constraint

We’ll first get rid of all the nodes we’ve created:

MATCH (n)

DETACH DELETE n;

And create the constraint again:

CREATE CONSTRAINT ON (p:Person)

ASSERT p.name IS UNIQUE;

Let's Graph our group

Join me on the
shared machine

Let's do it together

• Let’s create a graph of our group together!

• Open your browser to http://l.neo4j.org/trainer

• And type along with me.

• Don't be afraid, this is just a sandbox in a playground.

http://l.neo4j.org/trainer

CREATE statement:

CREATE (p:Person {name: 'Your Name'})

RETURN p

Let's find ourselves: CREATE -> MATCH

MATCH (p:Person {name: 'Your Name'})

RETURN p;

Your turn: CREATE a node for yourself

SET and update properties

Find yourself and SET your city as a property.

MATCH (p:Person {name: 'Your Name'})

SET p.city = 'Your City'

RETURN p;

Let's create ourselves twice. What happens now?
CREATE (p:Person {name: 'Your Name'})

MERGE to the rescue:

• MATCHes the whole pattern to find it
• If not found CREATE the pattern
• Relies on constraint for strong guarantees

MERGE (p:Person {name: 'Your Name'})

RETURN p

MERGE - Find Or Create

Most challenging task of the course:
Ask your left neighbour for their name.
Find the pair of you:

MATCH (p1:Person {name: 'Your Name'})

MATCH (p2:Person {name: 'Your Neighbour'})

RETURN p1, p2;

Or in one statement:

MATCH (p1:Person {name: 'Your Name'}),
 (p2:Person {name: 'Your Neighbour'})

RETURN p1, p2;

Creating relationships

Create a relationship between you and your neighbour:

MATCH (p1:Person {name: 'Your Name'})

MATCH (p2:Person {name: 'Your Neighbour'})

CREATE (p1)-[:KNOWS]->(p2);

CREATEing relationships

To avoid duplicate relationships, use MERGE

MERGE (p1:Person {name: 'Your Name'})

MERGE (p2:Person {name: 'Your Neighbour'})

MERGE (p1)-[:KNOWS]->(p2);

Relationship is created uniquely by

• type
• direction (can be left off)
• properties

MERGEing relationships

Let's clean up and delete ourselves

MATCH (p:Person {name: 'Your Name'})

DELETE p;

Oops! We can’t delete a node that still has relationships attached. We
need to delete those as well.

Cleaning up

Let's clean up and delete ourselves

MATCH (p:Person {name: 'Your Name'})

DELETE p;

Oops! We can’t delete a node that still has relationships attached. We
need to delete those as well.

MATCH (p:Person {name: 'Your Name'})

DETACH DELETE p;

Cleaning up

Open these in your browser. They’ll be useful for the rest of the session:

● Cypher Reference Card

http://neo4j.com/docs/cypher-refcard/

● Neo4j Developer Pages

http://neo4j.com/developer/cypher

● Neo4j Documentation

http://neo4j.com/docs

Useful resources for learning Cypher

http://neo4j.com/docs/cypher-refcard/current/
http://neo4j.com/docs/cypher-refcard/current/
http://neo4j.com/developer/cypher
http://neo4j.com/developer/cypher
http://neo4j.com/docs
http://neo4j.com/docs

End of Module
First steps in Cypher

Questions?

