

We will learn how to

* represent nodes and relationships in Cypher
* create and find nodes

* add properties

* use constraints and create nodes uniquely

* create relationships

* find patterns

* delete data

%9 neoy|

Setup

%9 neoy|

Make sure you’ve got Neodj running

1. Start the server.

It should be running on: http://localhost:7474

3. Log-in with default credentials

o user: neodj password: neodj

4. Choose a new password

We’re good to go!

@ neoy|

:play start ‘ il ‘ ¥ ‘ X
r']eOLd Learn about Neo4j Jump into code Monitor the system
A graph epiphany awsaits you. Use Cypher, the graph query language. Key system health and status metrics.
ENTERPRISE EI?::TI\QAOIE %: ‘What is a graph database? Code walk-throughs Disk utilization
A How can | query a graph? RDBMS to Graph
What do people do with Query templates luster health and status

Copyright © Neo Technology 2002-2016

http://localhost:7474

:play movies

Type the following command into the query editor:

:play movies

%9 neoy|

:play movies

Type the following command into the query editor:

:play movies

:play movies

Mini-app: The Movie Graph

Actors and their appearances. Click the code to load into the editor, then run it.

CREATE (TheMatrix li 9, tagline:'Welcome to the Real World'})

CREATE (Keanu:Per

CREATE (Carrie:Person {name

CREATE (Lau :Person {nam aurence Fishburne', born:1961})
CREATE (Hug n {nam o Weaving', born 0})

CREATE (LillyW:Person {name:'Lilly Wacho

CREATE

CREATE

CREATE

Neodj Browser 101

« Change node colors

« Change which node property is displayed

e Run queries with C(MD (CTRL) + Enter

e Insert new line with SHIFT + Enter

e Expand the query bar with ESC

e Double-click a node and see what happens!

e Use :clear to clear past results

e CMD (CTRL) + Up Arrow to scroll through past queries

%9 neoy|

The Syntax

@ neoy|

Cypher is just ASCII Art &P neoyj

Jay Hartford {x 2 Follow
& HL_Jayford

What | learned in Neo4j training today. You draw
ascil art to code.

RETWEET LIKE

T

11:15 PM - 15 Sep 2015

Nodes

Nodes are drawn with parentheses.

()

@ neoy|

Relationships %’ neoy|

Relationships are drawn as arrows, with additional detail in brackets.

-->
-[:DIRECTED]->

Patterns %’ neoy|

Patterns are drawn by connecting nodes and relationships with hyphens,
optionally specifying a direction with > and < signs.

O)-[1-0)
O)-[1->0)
O)<-[1-0)

The components of a Cypher query

MATCH (m:Movie)
RETURN m

MATCH and RETURN are Cypher keywords
mis a variable
:Movie is a node label

%9 neoy|

The components of a Cypher query %’ neos)

MATCH (p:Person)-[r:ACTED IN]->(m:Movie)
RETURN p, r, m

MATCH and RETURN are Cypher keywords
p,r, and m are variables

:Movie is a node label

:ACTED_IN is a relationship type

The components of a Cypher query %’ neos)

MATCH path = (:Person)-[:ACTED _IN]->(:Movie)
RETURN path

MATCH and RETURN are Cypher keywords
path is a variable

:Movie is a node label

:ACTED_IN is a relationship type

Graph versus Tabular results

MATCH (m:Movie)
RETURN m

?‘9 neoy|

Graph versus Tabular results %’ neoy)

MATCH (m:Movie)
RETURN m.title, m.released

Properties are accessed with {variable}.{property key}

Case sensitivity

Case sensitive

Node labels
Relationship types
Property keys

Case insensitive

Cypher keywords

%9 neoy|

Case sensitivity

Case sensitive

:Person
:ACTED IN

name

Case insensitive

MaTcH

return

%9 neoy|

The Basics

@ neoy|

Cypher: The Basics %’ neoy|

Type the following command into the query editor:

:play http://guides.neo4j.com/fundamentals/cypher the basics.html

http://guides.neo4j.com/fundamentals/cypher_the_basics.html

Follow the guides in your browser until you see... @ neos)

Aggregates

@ neoy|

Aggregates %9 neoy|

Aggregate queries in Cypher are a little bit different than in SQL as we
don’t need to specify a grouping key.

Aggregates %’ NeoL)

We implicitly group by any non aggregate fields in the RETURN
statement.

// implicitly groups by p.name
MATCH (p:Person)-[:ACTED IN]->(m:Movie)
RETURN p.name, count(*) AS numberOfMovies

Other aggregate functions

There are other aggregate functions as well.

You can see the full list on the Cypher refcard:
neo4j.com/docs/cypher-refcard/current/

%9 neoy|

Aggr ion

count(*)
The number of matching rows.

count(variable)
The number of non-nuLL values.

count(DISTINCT variable)
All aggregation functions also take the pIsTINCT modifier,
which removes duplicates from the values.

collect(n.property)
List from the values, ignores NULL.

sum{n.property)
Sum numerical values. Similar functions are avg, min, max.

percentileDisc(n.property, {percentile})
Discrete percentile. Continuous percentile is
percentileCont. The percentile argument is frome.e to 1.e.

stdev(n.property)
Standard deviation for a sample of a population. For an
entire population use stdevp.

https://neo4j.com/docs/cypher-refcard/current/
https://neo4j.com/docs/cypher-refcard/current/

Continue with the guide

Continue with the guide in your browser

@ neoy|

Constraints and Indexes

%9 neoy|

:schema

Type the following command into the query editor:

:schema

%9 neoy|

Unique Constraints %’ NeoL)

We create unique constraints to:

e ensure unigueness
- allow fast lookup of nodes which match label-property pairs.

Unique Constraints %9 Neoys)

We create unique constraints to:

ensure uniqueness
allow fast lookup of nodes which match label-property pairs.

CREATE CONSTRAINT ON (label:Label)
ASSERT label.property IS UNIQUE

Unique Constraints @ NeoL)

There are three types of unique constraints:

« Unique node property constraint

Unique Constraints %9 NeoL)

There are three types of unique constraints:

« Unique node property constraint

CREATE CONSTRAINT ON (label:Label)
ASSERT label.property IS UNIQUE

Unique Constraints %’ NeoL)

There are three types of unique constraints:

« Unique node property constraint
« Node property existence constraint

Unique Constraints

There are three types of unique constraints:

Unique node property constraint
Node property existence constraint

CREATE CONSTRAINT ON (label:Label)
ASSERT EXISTS(label.name)

@ Neoy

Unique Constraints %9 Neoys)

There are three types of unique constraints:

Unique node property constraint
Node property existence constraint
Relationship property existence constraint

Unique Constraints

There are three types of unique constraints:

Unique node property constraint
Node property existence constraint
Relationship property existence constraint

CREATE CONSTRAINT ON ()-[rel:REL_TYPE]->()
ASSERT EXISTS(rel.name)

%,Q Neoy

Indexes %@ Neoy)

We create indexes to:

- allow fast lookup of nodes which match label-property pairs.

Indexes %’ Neoy)

We create indexes to:

allow fast lookup of nodes which match label-property pairs.

CREATE INDEX ON :Label(property)

What are these fast lookups? @ Neo

The following predicates use indexes:

« Equality

» STARTS WITH
» CONTAINS

* ENDS WITH

« Range searches
« (Non-) existence checks

How are indexes used in neo4j? @ NEOL]

Indexes are only used to find the starting points for queries.

Relational Graph
Use index scans to look up rows in Use indexes to find the starting
tables and join them with rows points for a query.

from other tables

Cypher: The Basics %’ neoy|

Type the following command into the query editor:

:play http://guides.neodj.com/fundamentals/cypher constraints.html

http://guides.neo4j.com/fundamentals/cypher_the_basics.html

The MERGE Clause & neoy

MERGE (p:Person {name: 'Tom Hanks', oscar: true})

RETURN p

There is not a :Person node with name: 'Tom Hanks' and oscar:true in the
graph, but there is a :Person node with name: 'Tom Hanks"'.

What do you think will happen here?

Write queries

@ neoy|

The CREATE Clause

CREATE (m:Movie {title:'Mystic River', released:2003})
RETURN m

?‘9 neoy|

The SET Clause %’ Neoy)

MATCH (m:Movie {title: 'Mystic River'})
SET m.tagline = 'We bury our sins here, Dave. We wash them clean.'

RETURN m

The CREATE Clause %’ NEOL)

MATCH (m:Movie {title: 'Mystic River'})

MATCH (p:Person {name: 'Kevin Bacon'})

CREATE (p)-[r:ACTED_IN {roles: ['Sean']}]->(m)
RETURN p, r, m

The MERGE Clause

MERGE (p:Person {name:
RETURN p

"Tom Hanks'})

%9 neoy|

The MERGE Clause

MERGE (p:Person {name:
RETURN p

"Tom Hanks', oscar: true})

?‘9 neoy|

The MERGE Clause

MERGE (p:Person {name:
SET p.oscar = true

RETURN p

"Tom Hanks'})

?‘9 neoy|

The MERGE Clause

MERGE (p:Person {name:

"Tom Hanks'})-[:ACTED IN]

->(m:Movie {title: 'The Terminal'})

RETURN p, m

?‘9 neoy|

The MERGE Clause & neoyj

MERGE (p:Person {name: 'Tom Hanks'})-[:ACTED IN]
->(m:Movie {title: 'The Terminal'})

RETURN p, m

There is not a :Movie node with title:"The Terminal" in the graph, but
there is a :Person node with name:"Tom Hanks".

What do you think will happen here?

The MERGE Clause

MERGE (p:Person {name: 'Tom Hanks'})
MERGE (m:Movie {title: 'The Terminal'})
MERGE (p)-[r:ACTED IN]->(m)

RETURN p, r, m

?‘9 neoy|

ON CREATE and ON MATCH ?‘9 Neoy]

MERGE (p:Person {name: 'Your Name'})

ON CREATE SET p.created = timestamp(), p.updated = ©
ON MATCH SET p.updated = p.updated + 1

RETURN p.created, p.updated;

Style

%9 neoy|

Clauses @ Neoy)

Cypher clauses should be written in all caps and on their own line.

MATCH ...
WHERE ...
RETURN ...

Functions

Functions should be written in lower camel case.

MATCH path = allShortestPaths() ...
WHERE size(nodes(path)) ...
RETURN ...

?‘9 neoy|

Keywords @ Neoy)

Keywords should be written in all caps but don’t need to go on their own
line.

MATCH ...
RETURN collect(DISTINCT n)

8 exercise

Modeling conventions

%9 neoy|

Labels %9 Neoy)

Labels are upper camel case.

CREATE(n:Person)
CREATE(n:GraphDatabase)
CREATE(n:VeryDescriptivelabel)

Relationship Types @ Neo)

Relationships are uppercase with underscores to separate words.

CREATE(n)-[:LOVES]->(m)
CREATE(n)-[:REALLY_LOVES]->(m)
CREATE(n)-[:IS_IN_LOVE_WITH]->(m)

Properties

Properties are written in lower camelcase.

CREATE(n)

SET n.name = 'Dave’
CREATE(n)

SET n. firstName = 'Dave’
CREATE(n)

SET n.fullName = 'Dave Gordon’

?‘9 neoy|

%9 neoy|

Modeling exercise: Movie genres

Adding movie genres %’ NeoL)

The age old question: should we model them as properties or as nodes?

[genre: ["Action", "Sci-Fi"] name: "Action’]
vs @
cfc&%

N g
. ENRE
‘name "Sci- F|

Genres as properties

MATCH (m:Movie {title:

'The Matrix'})

SET m.genre = ["Action', 'Sci-Fi']

RETURN m

?‘9 neoy|

Genres as properties

MATCH (m:Movie {title:

'"Mystic River'})

SET m.genre = ['Action', 'Mystery']

RETURN m

?‘9 neoy|

The good side of properties

Accessing a movie’s genres is quick and easy.

MATCH (m:Movie {title:"The Matrix"})
RETURN m.genre;

@ neoy|

The bad side of properties %’ Neo)

Finding movies that share genres is painful and we have a disconnected
pattern in the MATCH clause - a sure sign you have a modeling issue.

MATCH (ml:Movie), (m2:Movie)

WHERE any(x IN ml.genre WHERE x IN m2.genre)
AND ml1 <> m2

RETURN ml, m2;

Genres as nodes

MATCH (m:Movie {title:"The Matrix"})
MERGE (action:Genre {name:"Action"})
MERGE (scifi:Genre {name:"Sci-Fi"})
MERGE (m)-[:IN_GENRE]->(action)
MERGE (m)-[:IN _GENRE]->(scifi)

%,9 neoy|

Genres as nhodes %’ neoy)

MATCH (m:Movie {title:"Mystic River"})
MERGE (action:Genre {name:"Action"})
MERGE (mystery:Genre {name:"Mystery"})
MERGE (m)-[:IN_GENRE]->(action)

MERGE (m)-[:IN_GENRE]->(mystery)

The good side of nodes

Finding movies that share genres is a natural graph pattern.

MATCH (ml:Movie)-[:IN_GENRE]->(g:Genre),
(m2:Movie)-[:IN_GENRE]->(g)
RETURN ml, m2, g

?‘9 neoy|

The (not too) bad side of nodes

Accessing the genres of movies requires a bit more typing.

MATCH (m:Movie {title:"The Matrix"}),
(m)-[:IN_GENRE]->(g:Genre)
RETURN g.name;

%9 neoy|

% End of Module
~ Introduction to Cypher

