
Relational to Graph



Relational is simple...until it gets complicated...

Relational to Graph
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You know relational...now consider relationships... 

Relational to Graph
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• Entity-Tables become Nodes

• Foreign Keys become Relationships

• Link Tables become Relationships

• Remove artificial Primary Keys and Foreign Keys

Normalized Relational Model to Graph Model



Querying your data



We already know how to query 
a relational database



select movie.title

from actors join actor_movie on (...) join movies on (...)

where actors.name = "Andreas"

Just use SQL

actors moviesactor_movie



How do we query a graph?



// find starting points

MATCH (:Person {name:'Andreas'})

// then traverse the relationships

      -[:ACTED_IN]->(movie:Movie)

     <-[:ACTED_IN]- (other:Person)

// and return results

RETURN other

We traverse the graph



• Cannot model or store data and relationships without complexity

• Performance degrades with number and levels of relationships, and 

database size

• Query complexity grows with need for JOINs

• Adding new types of  data and relationships requires schema 

redesign, increasing time to market

RDBMS can’t handle relationships well



When data relationships are valuable in real-time traditional databases 

aren’t the best choice.

RDBMS can’t handle relationships well



Express Complex Queries Easily with Cypher

Find all reports and how many people they manage, up to 3 levels down.

MATCH (boss)-[:MANAGES*0..3]->(mgr)
    
WHERE boss.name = "John Doe" 
AND (mgr)-[:MANAGES]->()

RETURN mgr.name AS Manager,
       size((mgr)-[:MANAGES*1..3]->()) 
       AS Total

Cypher SQL 



• Model your data naturally as a graph of data and relationships

• Drive graph model from domain and use-cases

• Use relationship information in real-time to transform your business

• Add new relationships on the fly to adapt to your changing 

requirements

Unlocking Value from Your Data Relationships



• Relationships are first class citizen

• No need for joins, just follow pre-materialized relationships of nodes

• Query & Data-locality – navigate out from your starting points

• Only load what’s needed

• Aggregate and project results as you go

• Optimized disk and memory model for graphs

High Query Performance with a Native Graph DB



Looks different. Who cares?

• a sample social graph with ~1,000 persons

• average 50 friends per person

• pathExists(a,b) limited to depth 4

• caches warmed up to eliminate disk I/O

# persons query time

Relational database 1,000 2000ms

Neo4j 1,000 2ms

Neo4j 1,000,000 2ms



Data Migration/Import



Ways to migrate data to Neo4j
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• Dump to CSV  all relational database have the 

option to dump query results and tables to CSV

• Access with DB-Driver  access DB with 
JDBC/ODBC or other driver to pull out selected 
datasets

• Use APOC procedures  apoc.load.jdbc 

• Use built-in or external endpoints some 
databases expose HTTP-APIs or can be integrated

• Use ETL-Tools existing ETL Tools can read from 
relational and write to Neo4j e.g. via JDBC

Accessing Relational Data



Cypher-Based “LOAD CSV” Capability
• Transactional (ACID) writes

• Initial and incremental loads of up to 10 million nodes 

and relationships

• From HTTP and Files

• Power of Cypher

• Create and Update Graph Structures

• Data conversion, filtering, aggregation

• Destructuring of Input Data

• Transaction Size Control

• Also via Neo4j-Shell / Cypher-Shell

Getting Data into Neo4j: CSV

CSV
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Command line bulk loader - neo4j-import
• For initial database population

• Scale across CPUs and disk performance

• Efficient RAM usage

• Split- and compressed file support

• For loads up to 10B+ records

• Up to 1M records per second

Getting Data into Neo4j: CSV

CSV
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• Cypher Import 10k-10M records

• Import  up to 100K-1M records per second 

transactionally

• Bulk import tens of billions of records in a 

few hours

Import Performance: Some Numbers

CSV



Architecture/Development



Neo4j Fits into Your Enterprise Environment
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In your persistence layer, switch to

• Official Neo4j Drivers with Cypher

• Community Drivers

• Neo4j-JDBC Driver

• Object-graph-mapping library

• Neo4j-ogm

• Spring Data Neo4j

• Py2neo

• neo4j-php-client (PHP) 

• Other libraries available for analytics pipeline, 

ETL and BI tools

•

Using Neo4j from your Application



End of Module
Relational to Graph

Questions?


