
Relational to Graph

Relational is simple...until it gets complicated...

Relational to Graph

2

table1 table2join-table

You know relational...now consider relationships...

Relational to Graph

3

actors moviesactor_movie

• Entity-Tables become Nodes

• Foreign Keys become Relationships

• Link Tables become Relationships

• Remove artificial Primary Keys and Foreign Keys

Normalized Relational Model to Graph Model

Querying your data

We already know how to query
a relational database

select movie.title

from actors join actor_movie on (...) join movies on (...)

where actors.name = "Andreas"

Just use SQL

actors moviesactor_movie

How do we query a graph?

// find starting points

MATCH (:Person {name:'Andreas'})

// then traverse the relationships

 -[:ACTED_IN]->(movie:Movie)

 <-[:ACTED_IN]- (other:Person)

// and return results

RETURN other

We traverse the graph

• Cannot model or store data and relationships without complexity

• Performance degrades with number and levels of relationships, and

database size

• Query complexity grows with need for JOINs

• Adding new types of data and relationships requires schema

redesign, increasing time to market

RDBMS can’t handle relationships well

When data relationships are valuable in real-time traditional databases

aren’t the best choice.

RDBMS can’t handle relationships well

Express Complex Queries Easily with Cypher

Find all reports and how many people they manage, up to 3 levels down.

MATCH (boss)-[:MANAGES*0..3]->(mgr)

WHERE boss.name = "John Doe"
AND (mgr)-[:MANAGES]->()

RETURN mgr.name AS Manager,
 size((mgr)-[:MANAGES*1..3]->())
 AS Total

Cypher SQL

• Model your data naturally as a graph of data and relationships

• Drive graph model from domain and use-cases

• Use relationship information in real-time to transform your business

• Add new relationships on the fly to adapt to your changing

requirements

Unlocking Value from Your Data Relationships

• Relationships are first class citizen

• No need for joins, just follow pre-materialized relationships of nodes

• Query & Data-locality – navigate out from your starting points

• Only load what’s needed

• Aggregate and project results as you go

• Optimized disk and memory model for graphs

High Query Performance with a Native Graph DB

Looks different. Who cares?

• a sample social graph with ~1,000 persons

• average 50 friends per person

• pathExists(a,b) limited to depth 4

• caches warmed up to eliminate disk I/O

persons query time

Relational database 1,000 2000ms

Neo4j 1,000 2ms

Neo4j 1,000,000 2ms

Data Migration/Import

Ways to migrate data to Neo4j

MIGRATE
ALL DATA

MIGRATE
GRAPH DATA

DUPLICATE
GRAPH DATA

Non-graph data Graph data

Graph dataAll data

All data

Relational
Database

Graph
Database

Application

Application

Application

• Dump to CSV all relational database have the

option to dump query results and tables to CSV

• Access with DB-Driver access DB with
JDBC/ODBC or other driver to pull out selected
datasets

• Use APOC procedures apoc.load.jdbc

• Use built-in or external endpoints some
databases expose HTTP-APIs or can be integrated

• Use ETL-Tools existing ETL Tools can read from
relational and write to Neo4j e.g. via JDBC

Accessing Relational Data

Cypher-Based “LOAD CSV” Capability
• Transactional (ACID) writes

• Initial and incremental loads of up to 10 million nodes

and relationships

• From HTTP and Files

• Power of Cypher

• Create and Update Graph Structures

• Data conversion, filtering, aggregation

• Destructuring of Input Data

• Transaction Size Control

• Also via Neo4j-Shell / Cypher-Shell

Getting Data into Neo4j: CSV

CSV

10
M

Command line bulk loader - neo4j-import
• For initial database population

• Scale across CPUs and disk performance

• Efficient RAM usage

• Split- and compressed file support

• For loads up to 10B+ records

• Up to 1M records per second

Getting Data into Neo4j: CSV

CSV

100
B

• Cypher Import 10k-10M records

• Import up to 100K-1M records per second

transactionally

• Bulk import tens of billions of records in a

few hours

Import Performance: Some Numbers

CSV

Architecture/Development

Neo4j Fits into Your Enterprise Environment

Data Storage and
Business Rules Execution

Data Mining
and Aggregation

Application

Graph Database Cluster

Neo4j Neo4j Neo4j

Ad Hoc
Analysis

Bulk Analytic
Infrastructure

Graph Compute Engine
EDW …

Data
Scientist

End User

Databases

Relational
NoSQL

Hadoop

In your persistence layer, switch to

• Official Neo4j Drivers with Cypher

• Community Drivers

• Neo4j-JDBC Driver

• Object-graph-mapping library

• Neo4j-ogm

• Spring Data Neo4j

• Py2neo

• neo4j-php-client (PHP)

• Other libraries available for analytics pipeline,

ETL and BI tools

•

Using Neo4j from your Application

End of Module
Relational to Graph

Questions?

