

Relational to Graph

Relational is simple...until it gets complicated...

tablel o - table2

Relational to Graph

You know relational...now consider relationships...

actors actor_movie movies

Normalized Relational Model to Graph Model

* Entity-Tables become Nodes

* Foreign Keys become Relationships

* Link Tables become Relationships

* Remove artificial Primary Keys and Foreign Keys

%9 neoy|

Querying your data

%9 neoy|

%9 neoy|

We already know how to query
a relational database

Just use SQL @ Neoy)

select movie.title
from actors join actor_movie on (...) join movies on (...)
where actors.name = "Andreas"”

actors actor_movie movies

How do we query a graph?

%9 neoy|

We traverse the graph

// find starting points
MATCH (:Person {name:'Andreas'})
// then traverse the relationships
-[:ACTED_IN]->(movie:Movie)
<-[:ACTED_IN]- (other:Person)
// and return results “ﬂaﬁ,;ft
RETURN other

%,9 neoy|

RDBMS can’t handle relationships well @ NEeOoL]

* Cannot model or store data and relationships without complexity

* Performance degrades with number and levels of relationships, and
database size

* Query complexity grows with need for JOINs

* Adding new types of data and relationships requires schema
redesign, increasing time to market

RDBMS can’t handle relationships well @ NEeOoL]

When data relationships are valuable in real-time traditional databases
aren’t the best choice.

Express Complex Queries Easily with Cypher

%9 neoy|

Find all reports and how many people they manage, up to 3 levels down.
Cypher SQL

MATCH (boss)-[:MANAGES*@..3]->(mgr)

WHERE boss.name = "John Doe"
AND (mgr)-[:MANAGES]->()

RETURN mgr.name AS Manager,
size((mgr)-[:MANAGES*1..3]->())
AS Total

[SELECT T.directRepartees AS directReportees, sumiT.count} AS count
FROM (
SELECT manager pid AS directReportees, 0 AS count

FROM person_reportes manager

WHERE manager.pid = (SELECT id FROM person WHERE name = “fName IName")
UNION

SELECT manager.pid AS directRepartees, count(manager.directly_manages) AS count
FROM person_reportee manager
WHERE manager. pid = (SELECT id FROM person WHERE name = "fName IName”)
GROUP BY directReportees
UNION
SELECT pid AS.
FROM person_reportee manager
JOIN person_reportee raperee
ON manager.directly_manages = reportee. pid
WHERE manager.pid = (SELECT Id FROM person WHERE name = "fName IName”)
GROUP BY directReportees
UNION

tee.directly_manages) AS count

SELECT manager.pid AS directReportees, count{L2Reportees. directly_manages) AS count

FROM perien_reportee manager

J0IN person_reportee LiReportees

ON manager.directly_manages = L1Reportees.pid

JOIN person_reportee L2Reportees

ON LiReportees directly_manages = L2Reportees.pid

WHERE manager.pid = (SELECT id FROM person WHERE name s "fName IName")
GROUIP BY directReportees

JAST

GROUP BY directReporiees)

UNION

{SELECT T.directReportees AS directReportees, sum(T.count] AS count

FROM (

SELECT manager directly_manages AS directReportees, 0 AS count

FROM person_reportee manager

WHERE manager.pid = (SELECT id FROM person WHERE name = "fName IName”)
UNION

SELECT reportee. pid AS directReportees, count(repontee.directly_manages) AS count
FROM person_reportee manager

I0IN person_reportee reportee

'ON manager.directly_manages = reportee.pid

'WHERE manager.pid = (SELECT id FROM person WHERE name = "fName IName"]
GROUP BY directReportees.

UNION

SELECT depthlReportees.pid AS directReportees,
ecountidepth2Reportees.directly_manages) AS count
FROM person_reportee manager
JOIN person_reportee L1Reportees
ON manager.directly_manages = L1Reportees. pid
IOIN person_reportee L2Reportees
ON L1Reportees.directly_manages = L2Reportees pid
WHERE manager.pid = [SELECT id FROM person WHERE name = “fName IName")
GROUP BY directReportees
1AST
GROUP BY directReportees)
UNION
{SELECT T.directReportees AS directReportees, sum|T.count) AS count
FROM[
SELECT reportee directly_manages AS directReportees, 0 AS count
FROM person_reportes manager
JOIN person_repartee reportee
ON manager directly_manages = reportee.pid
WHERE manager.pid = [SELECT id FROM person WHERE name = “fName IName")

GROUP BY directReportees

UNION

SELECT L2R: id AS 3 t{L2ZR directly_manages}
AS count

FROM person_feportee manager

IOIN person_reportee L1Reportees

ON manager directly_manages = L1Reportees.pid

IOIN person_reportee L2Repartees

ON L1Reportees.directly_manages = L2Reportees.pid

'WHERE manager.pid = [SELECT id FROM person WHERE name = “fName IName")
GROUP BY directReportees

1AST

GROUP BY directReportees)

UNION

(SELECT LZReportees.directly_manages AS directReportees, 0 AS count

FROM person_reportee manager

JOIN person_reportee LiReportees

ON manager.directly_manages = L1Reportees.pid

IOIN person_repartee L2Repartees

ON LiReportees.directly_manages = L2Reportees.pid

'WHERE manager.pid = (SELECT id FROM person WHERE name = “fName IName")

1

Unlocking Value from Your Data Relationships %«, neos)

* Model your data naturally as a graph of data and relationships

* Drive graph model from domain and use-cases

* Use relationship information in real-time to transform your business

* Add new relationships on the fly to adapt to your changing
requirements

High Query Performance with a Native Graph DB @ NeoL)

* Relationships are first class citizen

* No need for joins, just follow pre-materialized relationships of nodes
* Query & Data-locality — navigate out from your starting points

* Only load what’s needed

* Aggregate and project results as you go .

* Optimized disk and memory model for graphs =

Looks different. Who cares?

* asample social graph with ~1,000 persons
* average 50 friends per person

» pathExists(a,b) limited to depth 4

e caches warmed up to eliminate disk I/O

persons qguery time
Relational database pieolo] 2000ms
\N[=ler43 1,000 2ms

\[=ler4311 1,000,000 2ms

Data Migration/Import

%9 neoy|

Ways to migrate data to Neo4j %’ NeoL)

Relational Graph
Database Database
MIGRATE o
ALL DATA - Application All data -
MIGRATE L
GRAPH DATA Non-graph data = Application Graph data
OUPLCATE All data Application Graph data

GRAPH DATA

Accessing Relational Data

* Dump to CSV all relational database have the

option to dump query results and tables to CSV

* Access with DB-Driver access DB with
JDBC/ODBC or other driver to pull out selected
datasets

* Use APOC procedures apoc.load.jdbc

e Use built-in or external endpoints some
databases expose HTTP-APIs or can be integrated

* Use ETL-Tools existing ETL Tools can read from
relational and write to Neo4j e.g. via JDBC

Getting Data into Neo4j: CSV
Cypher-Based “LOAD CSV” Capability 9

* Transactional (ACID) writes

* |nitial and incremental loads of up to 10 million nodes

and relationships
* From HTTP and Files
* Power of Cypher
* Create and Update Graph Structures
* Data conversion, filtering, aggregation

e Destructuring of Input Data
* Transaction Size Control
* Also via Neo4j-Shell / Cypher-Shell

@ Neoyj

Getting Data into Neo4j: CSV

100
B

Command line bulk loader - neo4j-import
* Forinitial database population
* Scale across CPUs and disk performance
e Efficient RAM usage
e Split- and compressed file support

* For loads up to 10B+ records
* Upto 1M records per second

@ Neoyj

Import Performance: Some Numbers

* Cypher Import 10k-10M records

* Import up to 100K-1M records per second

transactionally
* Bulk import tens of billions of records in a

few hours

Architecture/Development

%9 neoy|

Neo4j Fits into Your Enterprise Environment @ NeoL)

Databases

Relational
NoSQL
Hadoop

Application

Bulk Analytic

Infrastructure
Graph Compute Engine
EDW ...

Neo4j Neo4] Neo4j

Graph Database Cluster

Data Storage and

Business Rules Execution
Ad Hoc

Analysis

Data Mining

and Aggregation '\ ‘
Data

Scientist

Using Neodj from your Application

In your persistence layer, switch to

» Official Neo4j Drivers with Cypher
* Community Drivers

%,Q neoy|

* Neo4j-JDBC Driver
* Object-graph-mapping library

Bulk Analytic
Infrastructure

* Neodj-ogm G Comare

* Spring Data Neo4;j

* Py2neo

* neodj-php-client (PHP)
* Other libraries available for analytics pipeline,

ETL and Bl tools

Databases

- . Relational
Application NosaL
Hadoop

Neodj Neo4j Neodj

Graph Database Cluster

- End of Module
~ Relational to Graph

