
Software Factories for Reproducible Research in Big Data/DL/AI

Arnaud Legrand

July 2020

Publishing: the Reproducibility ”Wave”

Artifact evaluation and ACM badges

Emerging Interest Group on https://reproducibility.acm.org/

Major conferences

• ACM SIGMOD 2015-2019, ACM MM 2019-2020, …
• Supercomputing: Artifact Description (AD) mandatory, Artifact
Evaluation (AE) optional, Double blind vs. Open reviews

• NeurIPS, ICLR: open reviews, Joelle Pineau @ NeurIPS’18

Mindsets and practices are evolving: people care and make stuff available
But it’s hard and tools are not mature yet

Why focus on AI/DL? Not only but it is very active, empirical and computational field

1/14

https://reproducibility.acm.org/
http://db-reproducibility.seas.harvard.edu/papers/index.html
https://project.inria.fr/acmmmreproducibility/
https://sc19.supercomputing.org/submit/reproducibility-initiative/
https://nips.cc/Conferences/2019/CallForPapers
https://reproducibility-challenge.github.io/iclr_2019/
https://www.youtube.com/watch?v=Kee4ch3miVA

Publishing: the Reproducibility ”Wave”

Artifact evaluation and ACM badges

Emerging Interest Group on https://reproducibility.acm.org/

Major conferences

• ACM SIGMOD 2015-2019, ACM MM 2019-2020, …
• Supercomputing: Artifact Description (AD) mandatory, Artifact
Evaluation (AE) optional, Double blind vs. Open reviews

• NeurIPS, ICLR: open reviews, Joelle Pineau @ NeurIPS’18

Mindsets and practices are evolving: people care and make stuff available
But it’s hard and tools are not mature yet

Why focus on AI/DL? Not only but it is very active, empirical and computational field 1/14

https://reproducibility.acm.org/
http://db-reproducibility.seas.harvard.edu/papers/index.html
https://project.inria.fr/acmmmreproducibility/
https://sc19.supercomputing.org/submit/reproducibility-initiative/
https://nips.cc/Conferences/2019/CallForPapers
https://reproducibility-challenge.github.io/iclr_2019/
https://www.youtube.com/watch?v=Kee4ch3miVA

Main Challenges

my_code --cfg=magical_param:0.94572 '*.dat' --output foo.csv

Tracking code version
• my_code is revision 21b95ecfa0911d6ca87668482b11ab9498edd8f3

Tracking software environment

• my_code depends on a dozen of libraries, which depend on dozens of libraries
• my_code was compiled with clang 1:9.0-49.1 and -O3 -funroll-loops
-fno-strict-aliasing -finline-functions ...

Tracking parameters and data

• *.dat? Ooh, you ran this in data/2091293-AJXQ37?
• Wasn’t mymap.dat updated since then?
• That was for foo.csv. What about bar.csv? Is it reproducible?

Tracking the process (on short/long term)

• Why did I run this? What did I learn from it? I remember doing this but when?

Handle complex sequences and reuse results (leverage cloud/supercomputers)

2/14

Main Challenges

my_code --cfg=magical_param:0.94572 '*.dat' --output foo.csv

Tracking code version
• my_code is revision 21b95ecfa0911d6ca87668482b11ab9498edd8f3

Tracking software environment
• my_code depends on a dozen of libraries, which depend on dozens of libraries
• my_code was compiled with clang 1:9.0-49.1 and -O3 -funroll-loops
-fno-strict-aliasing -finline-functions ...

Tracking parameters and data

• *.dat? Ooh, you ran this in data/2091293-AJXQ37?
• Wasn’t mymap.dat updated since then?
• That was for foo.csv. What about bar.csv? Is it reproducible?

Tracking the process (on short/long term)

• Why did I run this? What did I learn from it? I remember doing this but when?

Handle complex sequences and reuse results (leverage cloud/supercomputers)

2/14

Main Challenges

my_code --cfg=magical_param:0.94572 '*.dat' --output foo.csv

Tracking code version
• my_code is revision 21b95ecfa0911d6ca87668482b11ab9498edd8f3

Tracking software environment
• my_code depends on a dozen of libraries, which depend on dozens of libraries
• my_code was compiled with clang 1:9.0-49.1 and -O3 -funroll-loops
-fno-strict-aliasing -finline-functions ...

Tracking parameters and data
• *.dat? Ooh, you ran this in data/2091293-AJXQ37?
• Wasn’t mymap.dat updated since then?
• That was for foo.csv. What about bar.csv? Is it reproducible?

Tracking the process (on short/long term)

• Why did I run this? What did I learn from it? I remember doing this but when?

Handle complex sequences and reuse results (leverage cloud/supercomputers)

2/14

Main Challenges

my_code --cfg=magical_param:0.94572 '*.dat' --output foo.csv

Tracking code version
• my_code is revision 21b95ecfa0911d6ca87668482b11ab9498edd8f3

Tracking software environment
• my_code depends on a dozen of libraries, which depend on dozens of libraries
• my_code was compiled with clang 1:9.0-49.1 and -O3 -funroll-loops
-fno-strict-aliasing -finline-functions ...

Tracking parameters and data
• *.dat? Ooh, you ran this in data/2091293-AJXQ37?
• Wasn’t mymap.dat updated since then?
• That was for foo.csv. What about bar.csv? Is it reproducible?

Tracking the process (on short/long term)
• Why did I run this? What did I learn from it? I remember doing this but when?

Handle complex sequences and reuse results (leverage cloud/supercomputers)

2/14

Main Challenges

my_code --cfg=magical_param:0.94572 '*.dat' --output foo.csv

Tracking code version
• my_code is revision 21b95ecfa0911d6ca87668482b11ab9498edd8f3

Tracking software environment
• my_code depends on a dozen of libraries, which depend on dozens of libraries
• my_code was compiled with clang 1:9.0-49.1 and -O3 -funroll-loops
-fno-strict-aliasing -finline-functions ...

Tracking parameters and data
• *.dat? Ooh, you ran this in data/2091293-AJXQ37?
• Wasn’t mymap.dat updated since then?
• That was for foo.csv. What about bar.csv? Is it reproducible?

Tracking the process (on short/long term)
• Why did I run this? What did I learn from it? I remember doing this but when?

Handle complex sequences and reuse results (leverage cloud/supercomputers)
2/14

Many Problems, many Prototype Solutions

I can’t be exhaustive here but feel free to help me getting a better view on all this by:

• Adding related projects in the pad
• Telling me about your experience on these tools if you ever tried them

https://tinyurl.com/JDEVRR → http://pads.univ-grenoble-alpes.fr/p/jdev_reproducible_ai

Or come discuss about all this and share news on https://reproducible-research.inria.fr/

3/14

https://tinyurl.com/JDEVRR
http://pads.univ-grenoble-alpes.fr/p/jdev_reproducible_ai
https://reproducible-research.inria.fr/

Existing Tools and Standards

Notebooks and workflows Software environments
python3-matplotlib

python3-dateutil

python3-six

(>= 1.4)

python3:any

python-matplotlib-data

(>= 3.0.2-2)

python3-pyparsing

(>= 1.5.6)

libjs-jquery

libjs-jquery-ui

python3-numpy

(>= 1:1.14.3)

python3

(<< 3.8) (>= 3.7~)

python3-numpy-abi9

python3-cycler

(>= 0.10.0)

python3-kiwisolver

libfreetype6

(>= 2.2.1)

libpng16-16

(>= 1.6.2-1)

python3-pil

python3-tk

(>= 1.5)

(>= 3.2~)

tzdata

[python3] [python3]

{debconf} debconf-2.0

(>= 0.5)

[debconf] {cdebconf}

fonts-lyx ttf-bitstream-vera

(>= 3.3.2-2~)

jquery javascript-common

(>= 1.7)

(<< 3.8)(>= 3.7~)python3.7:any

libblas3 libblas.so.3

liblapack3 liblapack.so.3python3-pkg-resources

python3-minimal

(= 3.7.3-1)

python3.7

(>= 3.7.3-1~) libpython3-stdlib

(= 3.7.3-1)

python3.7-minimal

(>= 3.7.3-1~)

{dpkg} install-info

(>= 1.13.20)

libpython3.7-minimal

(= 3.7.3-2)

libexpat1

(>= 2.1~beta3)

libssl1.1

(>= 1.1.1)

libpython3.7-stdlib

(>= 0.5)

(= 3.7.3-2)

mime-support

libbz2-1.0

liblzma5

(>= 5.1.1alpha+20120614)

libdb5.3 libffi6

(>= 3.0.4)

libmpdec2 libncursesw6

(>= 6)

libtinfo6

(>= 6) libreadline7

(>= 7.0~beta)

libsqlite3-0

(>= 3.7.15)

libuuid1

(>= 2.20.1)

bzip2file xz-utils

(= 1.0.6-9)

libmagic1

(= 1:5.35-4)

libmagic-mgc

(= 1:5.35-4)

(>= 5.2.2)xz-lzma

(= 6.1+20181013-2)

libgpm2

(>= 6)

readline-common

(>= 1.15.4)

libreadline-common

(>= 1.16.1)

uuid-runtime

(>= 2.25-5~) (>= 2.31.1)

adduserlibsmartcols1

(>= 2.27~rc1)

libsystemd0

(>= 0.5)

passwd

(>= 5.1.1alpha+20120614)

libgcrypt20

(>= 1.8.0)

liblz4-1

(>= 0.0~r122)

libgpg-error0

(>= 1.25)

libgpg-error-l10n

(= 3.7.3-2)

(= 3.7.3-2)

(>= 3.7.3-1~)

[python3.7] [python3.7]

libgfortran5

(>= 8)

libquadmath0

(>= 4.6) ...

-6-

gcc-9-base

(= 9-20190428-1)

(>= 4.6)

(= 9-20190428-1)

(>= 8)

(>= 4.6)

...

-3-

(>= 3.3.2-2~) (<< 3.8)(>= 3.6~)

(>= 1.6.2-1)

(<< 3.8) (>= 3.7~)

(>= 2.2.1)

[mime-support] python3-pil.imagetk libimagequant0

(>= 2.11.10)

libjpeg62-turbo

(>= 1.3.1) liblcms2-2

(>= 2.2+git20110628)

libtiff5

(>= 4.0.3)

libwebp6

(>= 0.5.1) libwebpdemux2

(>= 0.5.1)

libwebpmux3

(>= 0.6.1-2)

python3-olefile

(<< 3.8)(>= 3.7~)

(= 6.0.0-1)

(>= 3.4.1-2)

(>= 3.7.1-1~)(<< 3.9)

blt

(>= 2.4z-9)

tk8.6-blt2.5

(>= 2.5.3)

libtcl8.6

(>= 8.6.0)

libtk8.6

(>= 8.6.0)(= 2.5.3+dfsg-5)

(>= 8.6.0)

(>= 8.6.0)

blt4.2blt8.0 blt8.0-unoff

(>= 2.2.1)

(>= 8.6.0-2)

libfontconfig1

(>= 2.12.6)

libxext6

libxft2

(>> 2.1.1)

libxss1

(>= 2.3.5)(>= 2.12.6)

libxrender1 x11-common

libjpeg62

(>= 5.1.1alpha+20120614)

(>= 1.3.1)

libjbig0

(>= 2.0) (>= 0.5.1)

libzstd1

(>= 1.3.2) (>= 0.5.1)(>= 0.5.1)

Matplotlib library

Python dependencies

Real dependencies

Fake OS dependencies
induced by package granularity

Sharing platforms

The Data/Code/Execution Triptych 4/14

Tracking Code… and Data ?

Git has become the de facto standard and ultimate code tracking tool

• GitHub, BitBucket, GitLab, … make it more human-friendly
• Note that none of these platforms is perenial (see Roberto’s presentation on
SoftWare Heritage)

• Git tracks a single software project: Git submodule or Git subtree

Why not use Git for tracking data?
• Git was not designed to handle large binary files (e.g., databases, HDF5, video)
 Git LFS (co-developed by GitHub and Atlassian around 2015) and Git Annex

• Git was not designed with ”privacy” or ”access control lists” in mind
 Cryptography support in Git Annex

5/14

https://git-scm.com/book/fr/v2/Utilitaires-Git-Sous-modules
https://www.atlassian.com/git/tutorials/git-subtree
https://www.atlassian.com/git/tutorials/git-lfs
https://git-annex.branchable.com/
https://git-annex.branchable.com/encryption/

Tracking Code… and Data ?

Git has become the de facto standard and ultimate code tracking tool

• GitHub, BitBucket, GitLab, … make it more human-friendly
• Note that none of these platforms is perenial (see Roberto’s presentation on
SoftWare Heritage)

• Git tracks a single software project: Git submodule or Git subtree

Why not use Git for tracking data?
• Git was not designed to handle large binary files (e.g., databases, HDF5, video)
 Git LFS (co-developed by GitHub and Atlassian around 2015) and Git Annex

• Git was not designed with ”privacy” or ”access control lists” in mind
 Cryptography support in Git Annex

5/14

https://git-scm.com/book/fr/v2/Utilitaires-Git-Sous-modules
https://www.atlassian.com/git/tutorials/git-subtree
https://www.atlassian.com/git/tutorials/git-lfs
https://git-annex.branchable.com/
https://git-annex.branchable.com/encryption/

Tracking Software Environment

Binary based QEMU/VirtualBox/VMWare/… LXC/Docker/Singularity/CharlieCloud/…
• Easy to use (e.g., share through DockerHub) although the first installation requires a root access
• Provides a common/standard software stack for a team
• No (or little) support for image reproducibility nor software inspection/modification

Package Managers pip, conda, dpkg, …
• Anaconda is OS agnostic and popular for data science

• Reinstalling a basic environment even after a few months can reveal impossible

• Debian commits to reproducibility: snapshots (March 2005) and reproducible builds
• You may freeze a Dockerfile by wisely freezing sources • Limited flexibility

Source based Spack, Guix, Nix, …
• Allows to rebuild a software stack in a controled way (sources, compiling options)
• Use caches to save compiling time
• Time machine mechanism and export to docker/…

6/14

https://docs.conda.io/en/latest/
https://snapshot.debian.org/
https://reproducible-builds.org/projects/
https://guix.gnu.org/blog/2020/reproducible-computations-with-guix/

Tracking Software Environment

Binary based QEMU/VirtualBox/VMWare/… LXC/Docker/Singularity/CharlieCloud/…
• Easy to use (e.g., share through DockerHub) although the first installation requires a root access
• Provides a common/standard software stack for a team
• No (or little) support for image reproducibility nor software inspection/modification

Package Managers pip, conda, dpkg, …
• Anaconda is OS agnostic and popular for data science

• Reinstalling a basic environment even after a few months can reveal impossible

• Debian commits to reproducibility: snapshots (March 2005) and reproducible builds
• You may freeze a Dockerfile by wisely freezing sources • Limited flexibility

Source based Spack, Guix, Nix, …
• Allows to rebuild a software stack in a controled way (sources, compiling options)
• Use caches to save compiling time
• Time machine mechanism and export to docker/…

6/14

https://docs.conda.io/en/latest/
https://snapshot.debian.org/
https://reproducible-builds.org/projects/
https://guix.gnu.org/blog/2020/reproducible-computations-with-guix/

Tracking Software Environment

Binary based QEMU/VirtualBox/VMWare/… LXC/Docker/Singularity/CharlieCloud/…
• Easy to use (e.g., share through DockerHub) although the first installation requires a root access
• Provides a common/standard software stack for a team
• No (or little) support for image reproducibility nor software inspection/modification

Package Managers pip, conda, dpkg, …
• Anaconda is OS agnostic and popular for data science

• Reinstalling a basic environment even after a few months can reveal impossible

• Debian commits to reproducibility: snapshots (March 2005) and reproducible builds
• You may freeze a Dockerfile by wisely freezing sources • Limited flexibility

Source based Spack, Guix, Nix, …
• Allows to rebuild a software stack in a controled way (sources, compiling options)
• Use caches to save compiling time
• Time machine mechanism and export to docker/…

6/14

https://docs.conda.io/en/latest/
https://snapshot.debian.org/
https://reproducible-builds.org/projects/
https://guix.gnu.org/blog/2020/reproducible-computations-with-guix/

Tracking the Exploration Process with a Notebook

The REPL (Read–eval–print loop) vs. Notebook vs IDE debate

• In the beginning was the Mathematica (1988) and the Maple (1989) notebooks, which
allow to tell a story (litterate programming)

• Then IJulia, IPython, and IR merged into the Jupyter notebook
• The coolest kid on the block without IDE/Structure, Interactive collaboration/Versioning,
Software Environment Control, Easy setup and use of Computing resources !!!

Now we have:
• JupyterLab, Binder, JupyterHub

• Guix-Jupyter

• IDE: Rstudio (not just R), Emacs,
VSstudio (Jupyter∼backend)

• CodeOcean showroom, interactive

• CoCalc/SAGE notebooks, Kaggle,
Google Colab, DeepNote
real-time, versioning, custom environment

• fast.ai/nbdev merge conflict, module export, test

• Beaker, Count ???

Little support for computing ressources: SoS Polyglot Notebook/Workflow System

7/14

https://twitter.com/GaelVaroquaux/status/1280850571201851392
https://jupyter.org/
https://pg.ucsd.edu/publications/computational-notebooks-design-space_VLHCC-2020.pdf
https://jupyterlab.readthedocs.io/en/stable/
https://jupyter.org/binder
https://jupyter.org/hub
https://hpc.guix.info/blog/2019/10/towards-reproducible-jupyter-notebooks/
https://rstudio.com/solutions/r-and-python/
https://github.com/dzop/emacs-jupyter
https://code.visualstudio.com/docs/python/jupyter-support-py
https://help.codeocean.com/en/articles/1458440-jupyter-notebooks-an-overview
https://cocalc.com/
https://www.kaggle.com/docs/notebooks
https://colab.research.google.com/
https://deepnote.com/
https://www.fast.ai/2019/12/02/nbdev/
http://beakerx.com/
https://count.co/
https://vatlab.github.io/sos-docs/

Tracking the Exploration Process with a Notebook

The REPL (Read–eval–print loop) vs. Notebook vs IDE debate

• In the beginning was the Mathematica (1988) and the Maple (1989) notebooks, which
allow to tell a story (litterate programming)

• Then IJulia, IPython, and IR merged into the Jupyter notebook
• The coolest kid on the block without IDE/Structure, Interactive collaboration/Versioning,
Software Environment Control, Easy setup and use of Computing resources !!!

Now we have:
• JupyterLab, Binder, JupyterHub

• Guix-Jupyter

• IDE: Rstudio (not just R), Emacs,
VSstudio (Jupyter∼backend)

• CodeOcean showroom, interactive

• CoCalc/SAGE notebooks, Kaggle,
Google Colab, DeepNote
real-time, versioning, custom environment

• fast.ai/nbdev merge conflict, module export, test

• Beaker, Count ???

Little support for computing ressources: SoS Polyglot Notebook/Workflow System

7/14

https://twitter.com/GaelVaroquaux/status/1280850571201851392
https://jupyter.org/
https://pg.ucsd.edu/publications/computational-notebooks-design-space_VLHCC-2020.pdf
https://jupyterlab.readthedocs.io/en/stable/
https://jupyter.org/binder
https://jupyter.org/hub
https://hpc.guix.info/blog/2019/10/towards-reproducible-jupyter-notebooks/
https://rstudio.com/solutions/r-and-python/
https://github.com/dzop/emacs-jupyter
https://code.visualstudio.com/docs/python/jupyter-support-py
https://help.codeocean.com/en/articles/1458440-jupyter-notebooks-an-overview
https://cocalc.com/
https://www.kaggle.com/docs/notebooks
https://colab.research.google.com/
https://deepnote.com/
https://www.fast.ai/2019/12/02/nbdev/
http://beakerx.com/
https://count.co/
https://vatlab.github.io/sos-docs/

Tracking the Exploration Process with a Notebook

The REPL (Read–eval–print loop) vs. Notebook vs IDE debate

• In the beginning was the Mathematica (1988) and the Maple (1989) notebooks, which
allow to tell a story (litterate programming)

• Then IJulia, IPython, and IR merged into the Jupyter notebook
• The coolest kid on the block without IDE/Structure, Interactive collaboration/Versioning,
Software Environment Control, Easy setup and use of Computing resources !!!

Now we have:
• JupyterLab, Binder, JupyterHub

• Guix-Jupyter

• IDE: Rstudio (not just R), Emacs,
VSstudio (Jupyter∼backend)

• CodeOcean showroom, interactive

• CoCalc/SAGE notebooks, Kaggle,
Google Colab, DeepNote
real-time, versioning, custom environment

• fast.ai/nbdev merge conflict, module export, test

• Beaker, Count ???

Little support for computing ressources: SoS Polyglot Notebook/Workflow System
7/14

https://twitter.com/GaelVaroquaux/status/1280850571201851392
https://jupyter.org/
https://pg.ucsd.edu/publications/computational-notebooks-design-space_VLHCC-2020.pdf
https://jupyterlab.readthedocs.io/en/stable/
https://jupyter.org/binder
https://jupyter.org/hub
https://hpc.guix.info/blog/2019/10/towards-reproducible-jupyter-notebooks/
https://rstudio.com/solutions/r-and-python/
https://github.com/dzop/emacs-jupyter
https://code.visualstudio.com/docs/python/jupyter-support-py
https://help.codeocean.com/en/articles/1458440-jupyter-notebooks-an-overview
https://cocalc.com/
https://www.kaggle.com/docs/notebooks
https://colab.research.google.com/
https://deepnote.com/
https://www.fast.ai/2019/12/02/nbdev/
http://beakerx.com/
https://count.co/
https://vatlab.github.io/sos-docs/

Running simulations with Sumatra (Computational NeuroScience)

create new
record find dependencies

get platform information

run simulation/analysis

record time taken

find new files

add tags

save record

has
the code
changed?

store diff

code
change
policy

raise
exception

yes

no

diff

error

smt configure --executable=python \
--main=main.py \
--datapath /path/to/data

smt run new.param --label=Sgamma \
--reason="Test a smaller gamma"

smt comment 20110713-174949 \
"Eureka! Nobel prize here I come"

smt tag "Figure 6"

smt repeat Sgamma

smtweb

Courtesy of Andrew Davison (AMP Workshop on RR)

Store records in a DB (duration, OS, args), environment, file content, concurrent executions
PyPet extends Sumatra with Parameter Sweep (Fork-Join, store trajectories in HDF5) 8/14

https://pythonhosted.org/Sumatra/
https://pypet.readthedocs.io/en/latest/

Running simulations with Sumatra (Computational NeuroScience)

smt configure --executable=python \
--main=main.py \
--datapath /path/to/data

smt run new.param --label=Sgamma \
--reason="Test a smaller gamma"

smt comment 20110713-174949 \
"Eureka! Nobel prize here I come"

smt tag "Figure 6"

smt repeat Sgamma

smtweb

Courtesy of Andrew Davison (AMP Workshop on RR)

Store records in a DB (duration, OS, args), environment, file content, concurrent executions
PyPet extends Sumatra with Parameter Sweep (Fork-Join, store trajectories in HDF5) 8/14

https://pythonhosted.org/Sumatra/
https://pypet.readthedocs.io/en/latest/

Tracking Data with DataLad (an other NeuroScience project)

Builds on git annex and git submodule plus small JSON metadata
datalad create myfirstrepo # datalad clone/update
datalad save

• 3rd-party integration (owncloud, S3, figshare, GitHub/Lab)
datalad create-sibling-github
datalad export-to-figshare

• data set combination/linkage, handles meta-data (EXIF, ID3, …) Paper
B

Raw
data

Analysis
A

Paper
A

Analysis
B

Preprocessed

Nest modular datasets to create a linked hierarchy of datasets,
and enable recursive operations throughout the hierarchy • Basic provenance and reproducibility support

datalad run -m "create a list" "bash src/list_titles.sh > data/lst.tsv"
datalad rerun eee1356bb7e8f921174e404c6df6aadcc1f158f0

• Extension for running in containers

9/14

https://www.datalad.org/
http://docs.datalad.org/projects/container/en/latest/

Tracking Data with DataLad (an other NeuroScience project)

Builds on git annex and git submodule plus small JSON metadata
datalad create myfirstrepo # datalad clone/update
datalad save

• 3rd-party integration (owncloud, S3, figshare, GitHub/Lab)
datalad create-sibling-github
datalad export-to-figshare

• data set combination/linkage, handles meta-data (EXIF, ID3, …) Paper
B

Raw
data

Analysis
A

Paper
A

Analysis
B

Preprocessed

Nest modular datasets to create a linked hierarchy of datasets,
and enable recursive operations throughout the hierarchy

• Basic provenance and reproducibility support
datalad run -m "create a list" "bash src/list_titles.sh > data/lst.tsv"
datalad rerun eee1356bb7e8f921174e404c6df6aadcc1f158f0

• Extension for running in containers

9/14

https://www.datalad.org/
http://docs.datalad.org/projects/container/en/latest/

Tracking Data with DataLad (an other NeuroScience project)

Builds on git annex and git submodule plus small JSON metadata
datalad create myfirstrepo # datalad clone/update
datalad save

• 3rd-party integration (owncloud, S3, figshare, GitHub/Lab)
datalad create-sibling-github
datalad export-to-figshare

• data set combination/linkage, handles meta-data (EXIF, ID3, …)

NIDM

DICOM
BIDS

00ce
405e

-658
9-11

e8↩

-b74
9-a0

369f
b55d

b0

RAW

"dicom":{ },"xmp":{ },}

{

...

...

...

{ }

"bids":{ }}

{

...

"ni
dm"

:{
}}

{

...STan ardizedD raw

std

ana

ANAlysis

raw

XMP
. . .

metadata format homogenization to JSON-LD
juxtapose representation of metadata plurality

 Automated metadata

 extraction from any

 number and selection

of formats

Subda
taset

 metad
ata a

ggre
gatio

n

into
supe

rdata
sets

full metadata export and query
in superdatasets

independent of data and subdataset availablity

 3rd-party metadata

 extractor support,

 extract once, use

everywhere

b910
1f1e

-ebc
9-4b

d5↩

-a46
9-50

5baa
a573

87
fc501

7a1-
bea6

-4ea
c↩

-9bd
3-26

640f
9d95

0f

T1
d41d

8cd9
8f00

b204
↩

 e98
0099

8ecf8
427e

 identifiers for datasets,
 file content and location
FAIR

 "path": "inputs/openneuro_ds008/sub-15/anat/sub-15_t1w.nii.gz",
 "metadata: {
 "datalad":{"dataset":"b9101f1e-ebc9-4bd5-a469-505baaa57387", },
 "annex":{"key":"d41d8cd98f00b204e9800998ecf8427e", ,
 "url":["http://openneuro.s3.amazonaws.com/ _R1.1.0/ Z9",]}},

{

...

...

}... ...

% datalad --output-format json search \
 bids.subject.sex:female bids.subject.age:24 bids.type:t1

• Basic provenance and reproducibility support
datalad run -m "create a list" "bash src/list_titles.sh > data/lst.tsv"
datalad rerun eee1356bb7e8f921174e404c6df6aadcc1f158f0

• Extension for running in containers

9/14

https://www.datalad.org/
http://docs.datalad.org/projects/container/en/latest/

Tracking Data with DataLad (an other NeuroScience project)

Builds on git annex and git submodule plus small JSON metadata
datalad create myfirstrepo # datalad clone/update
datalad save

• 3rd-party integration (owncloud, S3, figshare, GitHub/Lab)
datalad create-sibling-github
datalad export-to-figshare

• data set combination/linkage, handles meta-data (EXIF, ID3, …) Paper
B

Raw
data

Analysis
A

Paper
A

Analysis
B

Preprocessed

Nest modular datasets to create a linked hierarchy of datasets,
and enable recursive operations throughout the hierarchy • Basic provenance and reproducibility support

datalad run -m "create a list" "bash src/list_titles.sh > data/lst.tsv"
datalad rerun eee1356bb7e8f921174e404c6df6aadcc1f158f0

• Extension for running in containers
9/14

https://www.datalad.org/
http://docs.datalad.org/projects/container/en/latest/

Data Version Control with DVC (Machine Learning)

• git annex but special .dvc files with information about local/remote storage
dvc add data/data.xml
git commit data/data.xml.dvc -m "Dataset updates"
dvc push

git checkout
dvc checkout # Get the content

• snakemake but Data Pipelines trough a dvc.yaml task description
dvc run -n prepare \

-p prepare.seed,prepare.split \
-d src/prepare.py -d data/data.xml \
-o data/prepared \
python src/prepare.py data/data.xml

dvc repro

• A basic Workflow Management System with
little support for running pipelines in parallel

10/14

https://dvc.org/doc/start/data-access
https://discuss.dvc.org/t/comparison-to-datalad-and-git-annex/92
https://discuss.dvc.org/t/running-multiple-dvc-pipeline-in-parallel/267/6

Data analytics at NetFlix
At Netflix, we’ve put substantial effort into adopting notebooks as an integrated
development platform.
• Data scientist, data/reliability engineer, machine learning engineer

• Notebooks as functions with papermill
(Parameterized Notebooks)

• Run in docker environments
• MESON: a home made workflow
orchestration/scheduler (100,000+ jobs
per day)

• Store results in S3 by default
• Event/Time Trigger, Wait-for
• Dashboard like usage to generate daily
reports

Probably needed with so many people but I’ve no idea of how they survive such a
complexity level

11/14

https://netflixtechblog.com/scheduling-notebooks-348e6c14cfd6?gi=5767774e39cb
https://github.com/nteract/papermill
https://netflixtechblog.com/meson-workflow-orchestration-for-netflix-recommendations-fc932625c1d9

Data analytics at NetFlix
At Netflix, we’ve put substantial effort into adopting notebooks as an integrated
development platform.
• Data scientist, data/reliability engineer, machine learning engineer

• Notebooks as functions with papermill
(Parameterized Notebooks)

• Run in docker environments
• MESON: a home made workflow
orchestration/scheduler (100,000+ jobs
per day)

• Store results in S3 by default
• Event/Time Trigger, Wait-for
• Dashboard like usage to generate daily
reports

Probably needed with so many people but I’ve no idea of how they survive such a
complexity level 11/14

https://netflixtechblog.com/scheduling-notebooks-348e6c14cfd6?gi=5767774e39cb
https://github.com/nteract/papermill
https://netflixtechblog.com/meson-workflow-orchestration-for-netflix-recommendations-fc932625c1d9

Super Integrated Approaches: DeepKit

https://deepkit.ai/assets/images/deepkit-v2020.mp4

• Python and Neural Network centric
• Execute, track and ML experiments
• Layer debugger for Keras2 and Pytorch
• Side by side file and metrics diff

12/14

https://github.com/deepkit/deepkit
https://deepkit.ai/assets/images/deepkit-v2020.mp4

Lord, Have mercy!

• PolyAxon:
• Integrates with Keras, TensorFlow, SciKitLearn, …
• Tracks key model metrics, hyperparams, visualizations, artifacts and resources,
• Version control code and data
• Kunbernetes

• Pachyderm (Version-controlled data science)
• Versionned data without git: a centralized location (no conflict, allows removal,…)
• Pipelines and distributed computer: Kubernetes/KubeFlow

• Kono
• …

13/14

https://polyaxon.com/
https://www.pachyderm.com/
https://docs.pachyderm.com/latest/concepts/data-concepts/repo/
https://github.com/AITRICS/kono

Craftwork ”vs.” Software Factories

The industrialization of scientific research (Konrad Hinsen’s Blog, 2019)
The underlying cause for the reproducibility crisis is the ongoing industrialization of sci-
entific research.
Most software was written for in-lab use, and not even made available to others. Only a
small number of basic, standardized, andwidely used tools, such as compilers, were already
industrial products. Most data were likewise not shared outside the research group [..]
Science is intrinsically a bottom-up process, whereas management is about top-down or-
ganization.

Towards Long-term and Archivable Reproducibility (software collapse)
Reproducible workflow solutions commonly use high-level technologies that were popular
when they were created, providing an immediate solution which is unlikely to be sustain-
able in the long term. (Python 2 vs. Python 3)
The cost of staying up to date within this rapidly-evolving landscape is high.
 No dependency beyond a POSIX-compatible operating system, no administrator privi-
leges, no network connection and storage primarily in plain text

14/14

http://blog.khinsen.net/posts/2019/10/29/the-industrialization-of-scientific-research/
https://arxiv.org/abs/2006.03018

