Laurent Risser (CNRS).
Introduction au Deep Learning avec PyTorch.
Maîtrise de la programmation scientifique sous Python
→ Compréhension du principe de la descente de gradient stochastique pour l'apprentissage de réseaux de neurones (notions de loss, de mini-batchs et d'epochs en particulier).
→ Compréhension du fonctionnement de la rétro-propagation pour le calcul des gradients.
→ Mise en lien des principes évoqués avec l'apprentissage de réseaux de neurones sous PyTorch.
→ Utilisation de PyTorch sur des notebooks Jupyter (60% TP) sur deux cas simples de régression et de classification.
L'objectif est de comprendre et développer une première expérience d'utilisation de PyTorch.
Intelligence artificielle, Apprentissage automatique, Machine Learning, Réseaux de neurones, Deep Learning, Framework et environnements, Anaconda, Jupyter Lab, Numpy, Matplotlib, PyTorch, Datasets